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Abstract: The rise of machine and deep learning algorithms in predictive maintenance has led to the influx 
of multidimensional data analysis studies. However, although studies dedicate towards increasing the 
accuracy of regression and classification models, many commit to resolving the issues by addressing a single 
fault mechanism, neglecting the latent degradation of other fault mechanisms. In this paper, we dedicate 
our efforts in understanding multiple and systemic faults through multidimensional data analysis. Using 
Knowledge Graph via Network Analysis we allocate markers of fault mechanisms that are used as features 
for fault classification. The features are extracted from discretised hydraulic power signal, hydraulic fluid 
physical and chemical data, and system response data. Using feature extraction we were able to observe 
latent degradation mechanisms that are used for multi label classification using machine learning 
algorithms. The results obtained show that neural network had highest, i.e., 85% accuracy (AUC = 0.88) 
among classification algorithms in allocating systemic faults within the hydraulic power system. 
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1. INTRODUCTION 

Existing body-of-knowledge concerning failure mechanisms show conficting opinions regarding FPS (Fluid 
Power System). Many argue that particle (Jocanović et al., 2014) and air/water contamination (NORIA, n.d.) 
are the leading causes of stoppages, while some argue that overload and leakage are the most common 
causes of stoppage (Orošnjak et al., 2022). Furthermore, studies dedicated to analysing and understanding 
failure mechanisms show a lack of research related to multiple and systemic failures. Namely, most of the 
research performed dedicates to resolving the underlying mechanisms leading to a particular failure cause 
while neglecting the effects of latent degradation leading to a failure of other components within the 
system. 
In such instances, many components within the system are left in an imperfect state with latent detrimental 
effects on the long run. For instance, in the case of a hydraulic pump, controlling and reducing the 
contamination by filter replacement will not reduce the risk of stoppage caused by pump-generated 
particle contamination that cause wear of valves and actuators down the return line of the system before 
the filter. Also, focusing simply on the contamination-induced wear will ommit degradation caused by poor 
operator manipulation of machine or system. Hence, it becomes a question whether the studies should still 
dedicate towards the uniform analysis of root causes or should studies turn towards resolving simultaneous 
and multivariate analysis of systemic failures and faults without production stoppages. 
In this paper, we address the problem of systemic failures observed within the subsystem of the rubber 
mixing machines, specifically the hydraulic power system. As the system operates within an energy-
intensive regime (Ragab et al., 2022), including around-the-clock production, there is higher theoretical 
probability that simultaneous and latent degradation will occur in different parts of the system. Hence, 
instead of monitoring the system and pinpointing a specific failure while performing diagnostics, we use 
multi-rate data fusion (Huang et al., 2021) for CM (Condition Monitoring) by allocating multiple 
deteriorating mechanisms. 
The rest of the paper is structured as follows. The second section includes an in-detail description of the 
experimental installation, data acquisition and CM of the system. In addition, the section also presents 
descriptions of parameters and hyperparameters of used machine learning (ML) and Network Analysis 



(NA). The third section presents the results and discusses the obtained results. Finally, the last section 
includes contributions to the literature, limitations, and future research. 

2. METHODOLOGY 

2.1 Experimental Installation and Data Acquisition 

The experiment is performed on a hydraulic control system of a rubber mixing machine that performs 
movement for opening and closing the chamber. The hydraulic control system performs a hydraulic cycle 
for unloading the bulk material in three regimes: Opening Saddle, Idle Saddle and Closing Saddle. Data 
acquisition is performed through non-destructive measurements (Horvatic et al., 2016), including (1) inline 
lubricant condition monitoring (automatic particle counter, aqua sensor and turbine flow meter); (2) online 
system monitoring (SCADA) for measuring hydraulic cycles, idle time, and actuators’ movement; (3) offline 
fluid condition monitoring (ICP-OES – Inductively Coupled Plasma Optical Emission Spectrometry and 
laboratory analysis) for elemental and physio-chemical analysis of contaminants present in the oil. Offline 
oil analysis and online lubricant condition monitoring include measurements of physio-chemical 
characteristics of oil: oil density, viscosity (at 40°C and 100°C), viscosity index, flame point, flow point, total 
acid number, water (ppm), water saturation (%), ISO4406 contamination level, and elemental analysis using 
ICP-OES. The hydraulic power signal is discretised at 0.1 seconds (f = 10 Hz) from the HYDROTECHNIK 
MultiHandy 2045 with measurements from 15.10.2021-12.12.2021. 

2.2 Data processing and feature extraction 

From discretised hydraulic power signal, the signal is split into opening saddle, idle saddle and closing 
saddle regime. From the discretised signal, each part is used for feature generation (Table 1), after which 
features are used for machine learning classification based on quasi-faults generated by the deviations in 
the signal. Although the system (excluding total failures) was performing in order, the anomalies noticed in 
the signal are classified as „quasi-faults“. Quasi-faults are labelled via the concept of functional-
productiveness (see (Orošnjak et al., 2023)). The signal sample contains 980 performed cycles (15.10.2021-
12.12.2021). Hence, the sample contains n = 980 cycles and designated 52 features used for machine 
learning classification. The interpolation of offline measurements is performed with polynomial regression 
for at least R2 > 0.95 to eliminate missing data the sample used for machine learning classification. 
 
Table 1: Feature generation from discretised hydraulic signal 
 

Time-domain feature Feature notation1 Formula for feature generation 

Mean (average) value N_Mean_XS 𝑀𝐸𝐴𝑁 =
1

𝑛
∑ 𝑁𝑖
𝑛
𝑖=1   

Standard deviation N_StDev_ XS 𝑆𝑡𝐷𝑒𝑣 = √
(𝑥𝑖−𝑥̅)

2

𝑛−1
  

Root Mean Square N_RMS_ XS 𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑥𝑖

2
𝑖   

Quartile ranges (Q1,Q3) N_nQ_ XS 𝑛𝑄1;3 = 𝑥(𝑘) + 𝑎(𝑥(𝑘+1) − 𝑥(𝑘))  

Interquartile Range N_IQR_ XS IQR = N_3Q_𝑋𝑆 − N_1Q_𝑋𝑆  
Peak-to-peak N_P-P_ XS 𝑃_𝑃 = |N_MIN_𝑋𝑆 − N_MAX_𝑋𝑆|  

Skewness N_Skew_ XS 𝑆𝑘𝑒𝑤 = μ̃3 =
∑ (𝑥𝑖−𝑥̅)

3𝑛
𝑖

(𝑛−1)∙𝜎3
  

Kurtosis N_Kurt_ XS 𝐾𝑢𝑟𝑡 = μ̃4 =
∑ (𝑥𝑖−𝑥̅)

4𝑛
𝑖

(𝑛−1)∙𝜎4
  

1XS can represent: OS for Opening Saddle regime; IS for Idle Saddle Regime; CS for Closing Saddle Regime. 

2.3 Machine learning algorithms and parameters settings 

The algorithms used for classification are Random Forest (RF), Decision Tree (DT), Gradient Boosting 
Classification (GBC), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Multilayer 
Perceptron (MLP) Neural Network. All algorithms are trained with 60% of data, using the holdout data of 
20% tested, and for validation, 20% of data is used, splitting the data into 60/20/20. The following gives 
settings for the parameters and hyperparameters for all algorithms. The RF parameters are set: training 
data is used per tree at 60%, features are scaled, and splits are optimised with a maximum of 100 trees. 
The DT algorithm parameters are set: minimum observations per split are set at 20, minimum observations 
in the terminal are 7, maximum interaction depth is 30 and complexity penalty is set at 0.01 with scaled 



features. The GBC boosting parameters are set as follows: Shrinkage = 0.1, Interaction depth = 1, Minimum 
observations in node = 10, training data used per tree 50% with scaled features and optimised with a 
maximum of 100 trees. For the SVM, the settings are set as: weights = linear, cost of constraints violation 
= 1.0, tolerance of termination 0.001, epsilon parameter ξ =  0.01 with scaled features. The LDA parameters 
include scaled features, and for the relationships estimation MLE (Maximum Likelihood Estimation) method 
is used. For the MLP-NN, the activation function is a logistic sigmoid function with a backpropagation 
algorithm with a learning rate set at 0.05. The stopping criteria for loss function is set to 1 with 100000 
maximum training repetitions. The network optimisation used is a Genetic Algorithm (GA) with a population 
size of 20 and 10 generations. Parent selection is a roulette wheel with reset mutations (10% probability), 
a uniform crossover method, and a fitness-based survival method with elitism set at 10%. Given parameters 
and obtained results can be replicated via open-source JASP. 

2.4 Network Analysis for multivariate data visualisation 

For the NA the FR (Fruchterman-Reingold) is the common algorithm used in network analysis (Leme et al., 
2020), however, the huge network we used relies on Meinshausen-Buhlmann graph or the graphical lasso 
since they are building the huge network (Zhao et al., 2012). The network analysis allows a user to research 
data relationship and data complexity between features of interest. In our case, we extend the ML 
classification results with insights about features and data used for classification. As it is most often the 
case, especially with Random Forest, Decision Trees and Ensemble aglorithms such as the case with 
Gradient Boosting, some feature can be used for reaching >99% accuracy, even though the feature would 
not lead to meaningful conclusions about the case. Therefore, we use NA for gaining inisights about the 
system behavior and degradations that can lead up to systemic failures. It is also useful to emphasise that 
NA can sometimes be referred to as KG (Knowledge Graph) in literature (Xia et al., 2022), if it relies on 
multi-source data. The huge package in R (Zhao et al., 2012) is used for NA while the estimation criterion 
the EBIC (Extended Bayes Information Criterion) (Foygel & Drton, 2010) with tunning parameter of 0.5. 

3. RESULTS & DISCUSSION 

Using quasi-events for binary classification as „None“ and „Quasi-fault“, i.e., [0, 1], the results show high 
accuracy. However, even though classification performed well, suggesting the possibility of upcoming fault 
or stoppage, there is a lack of information regarding the part of the system that has degraded. However, 
from the observed discriminative learning algorithms (GCB, DT, RF), the feature importance suggests that 
only a few features are used to classify 100% (e.g., Flame point, N_1Q_OS, Viscosity). At the same time, the 
rest of them are excluded. In particular, the GCB algorithm suggests that only Flame point, N_Stdev_CS, 
N_1Q_OS and T3 are features used for classification, which is a misconception and can be misleading. The 
underlying reasons is that different features suggest different changes as percentage of degradation that 
require maintenance action. For instance, degradation of 10% of viscosity and density of oil would require 
preventive actions and suggest replacement of the oil. In other instances, rise of Fe or Cr particles with 
elemental analysis would sometimes require 10-fold changes (i.e., from 5 to 50 ppm) that would indicate 
changes in surface texture (Alar et al., 2010) leading to a wear. For that instance, it further requires pre-set 
maintenance plan that would indicate changes needing maintenance actions. For that instance, we use NA 
that would suggest changes in nodes and edges and indicate potential degradation of the system. 

 
Figure 1. Network analysis of the system in the initial state with labels 



Performing network analysis, we observe changes in the weight between the initial state (Figure 1) and in 
quasi-fault state (Figure 2), including clustering and labelling properties of the network. 
 

 
Figure 2. Network analysis of the system in the quasi-fault state with labels 

 
Some nodes show high association with higher-order clusters such as oil and elemental analysis that cluster 
together. This can suggest that changes in oil physio-chemical properties cluster with elements rise within 
the fluid, which can indicate changes in not only fluid condition but the presence of wear, since aside from 
Zn and Si, rise in Fe and Cr particles can suggest starting wear of hydraulic pump. Following the statement, 
it is reasonable to assume that differentation between the states does not necessarily lead to wear. This is 
because different component degrade differently, and changes in percentage rise suggest different 
outcomes and not necessarily failure of a component. However, instead of using ML algorithms, such as 
discriminative ones, where for instance GCB or RF show perfect classification properties just by using 3% 
of the features extracted and neglect latent changes in other features, we use NA to gain insight about the 
changes in feature properties (Figure 3). 

 
Figure 3. Centrality plot of conditions without and with quasi-faults 



The strength and expected influence of the NA is important since it provides information about the sum of 
the weights of all edges connected to the particular node (strength), while expected influence provides 
information about local and global influence. For instance, we can see that density significantly changes 
between quasi-events suggesting high strength, i.e., weighted sum of the edges to a particular node. In the 
case of expected influence, the N_Mean_CS, N_Mean_IS, N_Max_CS have the highest influence, followed 
by N_Max_IS, N_1Q_CS, N_Max_OS, and N_1Q_OS, and APC_6. From a practical standpoint this was 
confirmed since significant variations in the hydraulic power signal is noticed that would indicate 
degradation and potential wear. However, since other parameters, like Fe, Cr, oil density, that would 
indicate presence of wear were not noticed (e.g., filtering, filter replacement, oil refilling) and left unoticed, 
the changes in signal helped improve diagnostic and decision-making. 
Instead of using features for binary classification, the expert opinion for multiclass labels provided helped 
determine the degradation of components. Hence, using binary classification as quasi-events, we labelled 
quasi-faults as follows: yi = C, where C = {None, Closing saddle, Saddle position, Sensor response, Total 
failure, Wear component}. The recorded total and sensor failures are used for classification from the 
experiment; the rest are added as labels. For the classification, we use a neural network with the following 
parameters. The rprop+ (Riedmiller & Braun, 1993) with logistic sigmoid activation functions are used. 
Stopping criteria loss function 1 with 100000 max training repetitions. Features are scaled and seed is set 
at 1234. Topology of the network uses GA (Hajnayeb et al., 2011) with 20 population size and 10 
generations with roulette wheel parent selection and uniform crossover method. Reset mutations with 
probability of 10% and Survival method with elitism of 10% are used. The obtained results show good 
prediction properties with overall prediction of potential failures of 84% and 87.9% AUC (Area Under Curve) 
metrics (table 2). 
 
Table 2. Prediction accuracy of neural network for systemic failures 

Evaluation 
metrics 

None 
Closing 
saddle 

Saddle 
position 

Sensor 
response 

Total 
failure 

Wear 
component 

Average 

Accuracy 0.561 0.561 0.985 0.959 0.995 0.980 0.841 
AUC 0.955 0.977 0.997 0.857 0.500 0.988 0.879 

 
Based on the obtained classification we see that combinations of different changes in nodes and edges, 
can lead to different types of failure mechanisms. For instance, changes in system response and idle 
position of the saddle, can suggest slow response of the sensor. However, the biggest issues encountered 
were degradations of mechanisms that are not classified accurately. Namely, anomalies and spikes in the 
signal (presumably due to sensor disturbances) were classified as “None”. The underlying reasons include 
not statistically significant degradation of used features, which can lead to innacurate classifications. Hence, 
since there are numerous failure mechanisms that are left undetected or can be associated with different 
proposed failure mechanisms, the poor accuracy suggests that more background knowledge and 
associated underlying mechanisms need to be provided in order to increase the accuracy of the model. 

4. CONCLUSIONS 

The paper investigates the use of NA for allocating latent degradational mechanisms that can be used for 
labelling and condition monitoring. Namely, since ML models can indeed predict the outcomes with 
“perfect” classification results, this often leads to misscclassification and misinterpretation of the results. 
This is often the case with discriminative learning (e.g., RF, SVM, DT). In such instances, latent degradation 
of different components go by unnoticed since they are not captured as important features used for 
classifications. Therefore, we turn towards NA for observing changes in network structures, edge weights 
and centrality indices in understanding and observing potential systemic failure mechanisms that can go by 
unnoticed. The results obtained are used for gaining insights about the system behavior and from the 
observed distances metrics we generate multiclass features that would indicate existance of systemic 
failure mechanisms within practical hydraulic control system of a rubber mixing machine. The obtained 
results show classification accuracy and AUC metrics >80%, suggesting good results.  
There are several limitations of the study. Namely, the NA is still in the infancy and interpretation centrality 
indices is not fully understood, especially considering the weighted undirected NA, such as this case. Also, 
the interpretation of expected influence and strength centrality measures have different mathematical 
estimation since in some cases the expected influence can be calculated using both betweenness and 
strength centrality measures suggesting overlap in the interpretation. Next, since huge package is used 



with multidimensional data it is usually applied in high-dimensional statistics with sparse data, where there 
is higher features than sample sizes. Also, the partial correlation metric is used for estimating the edge 
weights to provide information how each pair of variables are related when the influence of all other 
variables are removed, which can be misleading in this case. Finally, there is only a handful of labels used, 
which is far from the actual potential failure mechanisms that potentially exist in the system.  
The future studies will include expanding features and dataset with maintenance activity logs as qualitative 
data that can be used in generating high-dimensional knowledge graphs and gain deeper understanding 
about insights and system behavior that will initially increase classification accuracy and maintenance 
decision-making. The author will also in the future engage in graphical neural networks based on the 
expanded sample of the same system. 
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