
International Journal of Industrial Engineering and Management (IJIEM), Vol. 3 No 3, 2012, pp. 163-171
Available online at www.iim.ftn.uns.ac.rs/ijiem_journal.php

ISSN 2217-2661

IJIEM

UDK 519.67

A Genetic Algorithm Approach for Minimizing Total
Tardiness in Single Machine Scheduling

Gürsel A. Süer
Industrial and Systems Engineering, Ohio University, Athens, OH 45701, USA

Xiaozhe Yang
Industrial and Systems Engineering, Ohio University, Athens, OH 45701, USA

Omar I. Alhawari
Industrial and Systems Engineering, Ohio University, Athens, OH 45701, USA

Joel Santos
Electrical and Computer Engineering, University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico 00681, USA

Ramon Vazquez
Electrical and Computer Engineering, University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico 00681, USA

Received (9 Jul 2012); Revised (22 September 2012); Accepted (30 September 2012)

Abstract
Minimizing total tardiness in single machine scheduling is known as NP-hard. In this paper, the problem is
extended to include non-zero ready times and the preemption of jobs is not allowed. First, a mathematical
model is developed. Due to computational complexities with the mathematical model, a Genetic Algorithm
approach is also proposed and later its performance is compared with optimal solutions. The results show
that GA can find optimal solution for small problems and near optimal solutions for large problems. The
results also show that among Delay-only, Non-delay-only, and Random strategies, Non-delay strategy
produced more robust solutions whereas random strategy found the optimal solution in smaller problem
categories.

Key words: Single Machine Scheduling, Tardiness, Genetic Algorithms, Mathematical Modeling.

1. INTRODUCTION

Scheduling is one of the most critical functions in any
manufacturing organization due to limited resources,
increased customer expectation and fierce competition
both domestically and internationally. Meanwhile, cost
reduction and profit maximization continue to be strong
motivations for all manufacturing companies in the
environment of globalization and internationalization. As
tardiness relates to operational costs, manufacturing
scheduling can affect the performance of a company
and hence chance of its survivability.
This paper focuses on single machine scheduling
problem with nonzero ready times, which can be
characterized as 1│rj│ΣTi using the Graham and Lawler
classification [1]. Furthermore, it is assumed that all
jobs arrive at different times with their arrival times
known in advance. Even though the single machine
manufacturing systems are rare in practice, the results
can be used for bottleneck machines in production lines
as well as manufacturing cells such as rotary injection
molding machine in a shoe manufacturing cell, casting
machine in a jewelry manufacturing cell, packing
machine in a finishing line, robot in a highly flexible
manufacturing cell, and so on. The objective is to
decide the job sequence in order to minimize the total

tardiness (TT), which measures the summation of
tardiness of all the jobs, i.e. TT = ΣTi where Ti = max{0,
Ci – Di}, Ci is the completion time, Di is the due date,
and Ti is the tardiness of job i. A summary of solution
techniques is given in Figure 1 for single machine
scheduling problem with various constraints. The
mathematical model can be used to reach the optimal
solution in the case of zero ready times. However, when
it comes to nonzero ready times, two possibilities can
be considered; (1) preemption allowed and (2)
preemption not allowed.

Figure 1. Summary of total tardiness in single machine
scheduling

Allowed

Single Machine Scheduling
Total Tardiness

Mathematical
Model

Preemption

GA

Zero ready times Non-zero ready times

Not Allowed

Delay Non-delay

Mathematical
ModelMathematical

Model

164 Süer et al.

IJIEM

In the former case, a job’s processing could be
interrupted and another job can be assigned. In the
latter case, once a job is assigned, it has to be
processed to completion without any interruption. Here,
two strategies have to be considered; 2a) assign one of
the available jobs when the machine becomes available
(Non-delay) or 2b) keep the machine idle until a
particular job arrives (Delay).
This problem is known as NP-hard and some branch-
and-bound procedures have been suggested for similar
problems. This paper focuses on “preemption-not-
allowed” case with the objective of minimizing the total
tardiness by using genetic algorithm (GA) and
mathematical model, while defining delay and non-
delay strategies for each job independently makes this
problem even more complicated.
Table 1. Dataset for example problem 1
Job 1 2 3 4 5

Processing time 2 2 9 4 6

Ready time 10 11 26 12 18

Due date 12 13 35 24 24

Strategy Delay Non-
delay

Delay Delay Non-
delay

A job sequence of 1-2-5-4-3 along with delay and non-
delay assignment strategies for each job independently
is shown in Figure 2 with a simple example problem
given in Table 1.

Job Idle Time (IT) 1 2 4 5 IT 3
Ci 10 12 14 18 24 26 35
Ti 1

Figure 2. Gantt chart for example problem 1

Steps for generating the sequence are listed in Table 2,
which gives the total tardiness to be 1 for this particular
example.
Table 2. Steps for generating sequence for example problem 1

Step Next
job Strategy Job

Available? Decision
Start Time/
Completion
Time

1 1 Delay no, r1=10 wait until
r1, then
assign

12/10

2 2 Non-
delay

yes, r2=11 assign 14/12

3 5 Non-
delay

no, r5=18 consider
next job

-/-

4 4 Non-
delay

yes, r4=12 assign 18/14

5 5 Non-
delay

Yes, r5=18 assign 24/18

6 3 Delay yes, r3=26 Wait until
r3, then
assign

35/26

The remainder of this paper is organized as follows:
section 2 presents the literature review of various
solution techniques in single machine scheduling. In
section 3, different genetic algorithm strategies are
proposed. Furthermore, a MIP mathematical model,
which provides optimal solutions, is described in details
in section 4. In section 5, data analysis as well as

computational results is presented. Finally, a brief
summary is concluded in section 6.

2. LITERATURE REVIEW
Scheduling a set of jobs which are to be processed on
a single machine to minimize total tardiness is known
as the single machine total tardiness problem (SMTTP).
Due to the complexity of SMTTP, minimizing total
tardiness has been proved to be NP-hard by Du and
Leung [2] with a given set of independent jobs on one
single machine, meaning that it is impossible to find an
optimal solution without using the enumerative
algorithm. Moreover, computational time increases
exponentially as the problem size grows. There has
been various research works on single machine
scheduling problem. Algorithms, including branch-and-
bound approach, dynamic programming algorithm, and
heuristic approaches have been applied to SMTTP.
Optimization approaches, such as branch-and-bound
approach, dynamic programming algorithm, and
mathematical model can guarantee the optimality.
Schrage and Baker [3] developed a dynamic
programming approach to the SMTTP. Hirakawa [4]
proposed a quick branch-and-bound based optimal
algorithm for SMTTP to minimize total tardiness, based
on a branch-and-bound algorithm. Kondakci et al. [5]
presented a new branch-and-bound algorithm for
SMTTP. Furthermore, a mathematical modeling
approach was developed by Panneerselvam [6] to
minimize total tardiness and weighted total tardiness as
well. Although mathematical model can provide optimal
solutions, the number of constraints and variables
become very large as the problem size grows.
Therefore, Panneerselvam [7] argued that the
mathematical model is limited to solve only small size
problems due to the limitation of any operations
research software.
In this case, heuristic approaches become a good
option since they are designed with least numbers of
steps to find near optimal solutions in reasonable time
periods. Potts and Van Wassenhove [8] developed an
algorithm, which decomposed the problem into
subproblems so that they were sufficiently small in
order to be solved by dynamic programming. Problems
with up to 100 jobs were tested in this case. A net
benefit of relocation heuristic (NBR) was developed by
Holsenback and Russell [9], which avoided the
enumeration of all possible sequences and could
determine which job should come last to reduce the
tardiness. Panwalker et al. [10] presented a P-S-K
heuristic which was substantially better than others in
respect of computational time. Alidee and Rosa [11]
studied the group scheduling problem for minimizing
the Total Tardiness on a single machine with a large
number of jobs and machines and suggested various
heuristic algorithms. Meanwhile, both weighted and
unweighted tardiness were considered in their work by
utilizing the Modified Due Date (MDD) algorithm
proposed by [12]. For the same problem in a small
scale, Gupta and Chantaravaraparan [13] proposed a
mixed integer linear programming model and developed
heuristics which are modifications of the NBR Heuristic

Süer et al. 165

IJIEM

(1992) and the PSK Heuristic (1993). More recently,
Baptiste [14] presented an algorithm for SMTTP with
release dates and preemption jobs. Koulamas and
Kyparisis [15] developed a polynomial time algorithm
for SMTTP in the presence of deadlines. However, it
was found that the algorithm could be extended only
when deadlines and due dates were compatible and all
job release times were equal. Later, the same algorithm
was applied to single machine scheduling problems
with setup times which were proportionate to the length
of the already scheduled jobs, defined as past-
sequence-dependent setup times (2008). Kanet and Li
[16] generated a rule for Weighted Modified Due Date
(WMDD) and compared it against other rules for
weighted tardiness. Furthermore, Tian et al. [17]
studied the single machine scheduling problem to
minimize the total tardiness. Meanwhile, some
optimality properties have been identified based on a
polynomially solvable special case. As an extended
research, an O(n2) time algorithm was proposed by
Tian et al. [18] to minimize total tardiness of n equal-
length preemptive jobs on a single machine.
To further improve the solution quality, meta-heuristics
is introduced as an alternative approach compared to
heuristics. Franca et al. [19] proposed a genetic
algorithm (GA) as well as new meta-heuristic
evolutionary algorithm, named memetic algorithm, for
single machine scheduling problems with due dates
and sequence dependent setup time. Later, memetic
algorithm was further applied by Maheswaran et al. [20]
to solve the single machine total weighted tardiness
problems. Meta-heuristics developed by Feldmann and
Biskup [21], including evolutionary strategies, simulated
annealing, and threshold accepting, are efficient in
obtaining near-optimal solutions by solving 140
benchmark problems with up to 1000 jobs. Moreover,
an Ant Colony Optimization (ACO) was proposed by
Cheng et al [22] for SMTTP. Vallada et al. [23]
presented an evaluation of heuristics and meta-
heuristics for the m-machine flowshop scheduling
problem with the objective of minimizing total tardiness.
Even though single machine scheduling problem has
received considerable amount of attention in the past,
ready times are assumed to be zero in most of the
problem definitions. In this paper, non-zero ready times
is introduced to SMTTP. Furthermore, for studies that
address total tardiness in the literature, they allow
preemption or make very specific assumptions such as
deadlines and due dates are compatible and all job
release times are equal, etc. However, in this paper, all
jobs Delay, all jobs Non-delay and Mixed strategies

(some jobs delay and others non-delay) are considered
in minimizing total tardiness and preemption is not
allowed. This is believed to be a significant contribution
to the literature, since there is no other literature
addressing exactly the same problem to the best
knowledge of authors. Dessouky and Deogun [24]
presented a branch-and-bound procedure to minimize
the average flow time when there are jobs with non-
zero ready times. Later, Deogun [25] improved the
previous approach by dividing the problem into
subproblems and then applied branch-and-bound
algorithm to each subproblem. Recently, Süer et al. [26]
proposed an evolutionary programming (EP) to
minimize the average flow time of a single machine
scheduling problem in the presence of non-zero times
and when preemption is not allowed. There are also
some other researchers focusing on weighted
completion time problem with nonzero ready times. In
this paper, nonzero ready time as well as preemption
not allowed situation are introduced, making the
scheduling task more complicated.

Genetic algorithm (GA), first proposed by John Holland
in the 1960s [27] and further developed by Goldberg
[28], is a heuristic search algorithm that simulates the
process of natural selection and evolution. In building
genetic algorithm, five fundamental issues that affect
the performance of GA must be addressed:
chromosome representation, initialization of the
population, selection strategy, genetic operators, and
termination criterion. In the following subsections, those
issues are introduced and described specifically for the
proposed genetic algorithm.

3. GENETIC ALGORITHM SCHEME
3.1 Chromosome Representation

For any GA, the chromosome representation
determines how the problem is structured in GA, as well
as the genetic operators that can be used. Determining
an appropriate representation of the variables is
necessarily the first step in designing the GA. In this
paper, a representation is developed in which each
gene corresponds to the position of a job in the
sequence. Specifically, with N genes in each
chromosome, position i indicates the ith job in the
sequence as shown in Figure 3. Since delay and non-
delay strategies are assigned to every job
independently, each gene is represented by a pair of
parameters (X,Y), while X denotes the job being
assigned and Y shows the scheduling strategy adapted
(1 for delay, 2 for non-delay).

Position 1 Position 2 Position 3 Position 4 … Position N
1st job in
sequence

2nd job in
sequence

3rd job in
sequence

4th job in
sequence … Nth job in sequence

(7,1) (5,2) (4,1) (3,2) … (10,1)

Job 7 Job 5 Job 4 Job 3 … Job 10

delay non-delay Delay non-delay Delay

Figure 3. Gene representation for the scheduling problem

166 Süer et al.

IJIEM

3.2 Fitness Function

In this paper, the objective is to minimize the total
tardiness in the presence of non-zero ready times,
which can be represented as the summation of
tardiness values from all jobs as given in equation (1).

∑
=

=
N

i
iTTT

1
 (1)

3.3 Initialization of the Population

The initial population consists of s chromosomes. Since
GA iteratively improves existing solutions, a completely
random seeding of the initial population is employed in
this paper. Therefore, for each chromosome, the
probability that a job can be assigned to the 1st position
is the same for all jobs. Once the 1st job in the
sequence is determined and assigned, it is removed
from the list and the remaining (N-1) jobs are to be
assigned. The probability that any of the remaining jobs
will be assigned to the 2nd position in the sequence is
equal for all of the remaining jobs. As soon as the 2nd
position is filled, remaining (N-2) jobs compete for the
3rd position and the assignment process continues until
all jobs are assigned to a position. For scheduling
strategy assignment, equal probability has been given
to delay and non-delay strategies. In this case, every
job will have a probability of 50% to be assigned either
delay or non-delay strategy.

3.4 Reproduction

In this paper, a roulette wheel-based reproduction
strategy is used. In this case, a fitness function-based
reproduction probability is assigned to each
chromosome to generate parents for mating. Since
reproduction probability should increase as the total
tardiness decreases, a simple transformation function is
applied to give higher reproduction probability to those
chromosomes with lower total tardiness. First, all total
tardiness values are added as shown in equation (2). A
constant “1” is added to every fitness function to avoid
“division by zero”. Then, adjusted fitness values are
computed for each chromosome by dividing the total
fitness value by the corresponding fitness value
(equation 3). Finally, reproduction probability is
calculated for each chromosome based on the adjusted
fitness value as shown in equation (4). Based on the
reproduction probability, random numbers are
generated to select mating parents.

 1
(1)

s

i
i

TFF FF
=

= +∑

 (2)

 () /(1)i iAF TFF FF= + (3)

 1
/()

s

i i i
i

p AF AF
=

= ∑ (4)

Where, FFi is total tardiness for chromosome i; TFF is
sum of total tardiness values; AFi is adjusted fitness
value for chromosome i; pi is reproduction probability for
chromosome i.

3.5 Crossover Operator

For each pair, whether or not the crossover operator
will be applied is tested first. If a randomly generated
number is lower than the crossover probability, then
crossover strategy is applied to the pair. The probability
of crossover determines the rate at which the crossover
is applied. A higher crossover probability can introduce
new strings quickly into the population, while a lower
one can cause stagnation in neighborhood search.
A single cut point crossover strategy from [29] is
applied in the proposed GA. Assume that cut point has
been randomly determined after the 3rd gene of the
parents as shown in Figure 4. The last three genes are
swapped thus generating two new offspring, while the
first three genes are kept the same. However, it can be
easily observed that both offspring are infeasible since
job 6 is missing in the 1st offspring and job 2 is missing
in the second one. Therefore, an offspring repair
procedure is introduced to both offspring by replacing
the repeated genes with the missing ones. Repeated
genes are replaced by the missing ones in the order
they appear in the other parent.

Figure 4. Single cut point crossover strategy

3.6 Mutation Operator

Mutation rate is the probability with which each gene in
a new chromosome undergoes a random change after
a selection process. A low mutation rate can help to
prevent any gene from getting stuck to a single value,
while a high mutation rate will result in random search
eventually.

In the proposed GA, two kinds of mutation operators
are introduced, which are job-based mutation and
scheduling strategy-based mutation. Both mutation
operators are applied to each gene independently. For
job-based mutation, which was proposed by Gen and
Chen [29], randomly selected job positions are
swapped. As an example, mutation is applied to job 3
by swapping with job 5 randomly determined. For
scheduling strategy-based mutation, current strategy of
one job can be changed to the other one. Figure 5.
shows that non-delay strategy of job 4 is changed to
delay after mutation.

Süer et al. 167

IJIEM

Figure 5. Job-based and scheduling strategy-based mutation

3.7 Selection Strategy

To choose chromosomes from current parents as well
as offspring for the next generation, roulette wheel
selection scheme from Bäck [30] is applied in this paper
where good individuals have more chance to survive in
the next generation. Meanwhile, roulette wheel
selection can introduce certain randomness to the
current population to increase the diversity. In roulette
wheel selection, a probability of being selected is
assigned to individuals, which is directly proportionate
to goodness of their fitness function values. Then,
randomly generated numbers determine chromosomes
going to the next generation. In this case, chromosome
replication in each generation is allowed.

3.8 Termination Criterion

The GA moves from one generation to another by
selecting parents and producing offspring until a
termination criterion is met. The most frequently used
stopping criterion is a specified maximum number of
generations. Moreover, since GA will force much of the
entire population to converge to a single solution, some
acceptable threshold can be established as the
termination criterion, such as sum of the deviation
among individuals and maximum number of
generations without improvement. The
experimentations in this paper employ a maximum
number of generations as the stopping criterion.

4. MATHEMATICAL MODEL
A mathematical model is developed in this paper to find
the sequence of N jobs on a single machine such that
the total tardiness is minimized. Previously, [13]
developed an integer programming for group
scheduling problems to minimize total tardiness on a
single machine for zero ready times. Kamat [31]
proposed a math model to minimize the total tardiness
in a multi-cell environment with zero ready times.
However, to the best knowledge of authors, the
mathematical model proposed in this paper with non-
zero ready times restrictions has not been reported in
the literature before. It is assumed that the processing
times, ready times and due dates are known for all jobs.
ILOG’s Optimization Programming Language (OPL),
which supports linear and quadratic objectives and

constraints, as well as integer and real variables, is
used to solve this mathematical model.
Objective Function:

Minimize ∑
=

=
N

i
iTTT

1
 (5)

Constraints:

∑
=

− ×+=
N

i
ijijj XPCC

1
1

j = 1, 2., N; 0 0C =

(6) ∑∑
−

=
−

=

−−×≥
1

1
1

1

j

k
kj

N

i
ijij RCXRTR

j = 1, 2., N; 0 0R =

(7) ∑
=

+=
j

k
kjj RCCT

1
 j = 1, 2., N

(8) ∑
=

×−=
N

i
ijijj XDCTT

1
 j=1,2., N

(9) 1
1

=∑
=

N

i
ijX j = 1, 2.,N

(10)
1

1
N

ij
j

X
=

=∑ i=1, 2., N

(11))1,0(∈ijX integer; jC , jCT , jT , jR , 0TT ≥

Where,
Xij =1, if job i is processed in sequence j; 0, otherwise
Cj is initial completion time of job in jth sequence
(without considering ready times)
CTj is final completion time of job in jth sequence
(considering ready times)
Tj is tardiness value of job in jth sequence
Rj is waiting time of job in jth sequence
TT is total tardiness
Di is due date of job i
Pi is processing time of job i
RTi is ready time of job i
N is Number of jobs

The objective function given in equation (5) is to
minimize the sum of tardiness values of all jobs.
Equation (6) computes the initial completion time of job
in jth position without considering the ready times, i.e.,
sums the initial completion time of the previous job and
its own processing time. As the key constraint in this

168 Süer et al.

IJIEM

model, equation (7) presents the waiting time of each
job. On one hand, if the ready time of the job to be
processed is smaller than the initial completion time of
the previous job plus waiting times of all previous jobs,
there will be no extra waiting time for the job to be
available. On the other hand, it will require additional
waiting time until the job becomes available. Equation
(8) gives the actual completion times of each job, while
the tardiness of each job is described in equation (9).
When the right hand side is positive, tardiness takes a
positive value and when it is negative, tardiness
becomes zero. Equation (10) guarantees that only one
job is assigned to each position. Similarly, equation (11)
promises that each job is assigned to only one position.

5. EXPERIMENTATION PERFORMED
In this section, the experimentation performed by using
the mathematical model and the proposed genetic
algorithm approach is described. All of the experiments
were made using Dell PC with dual 2.40GHz CPU and
2.0 GB RAM.

5.1 Generating Datasets

For test purposes, five different problems are generated
randomly, including 10-job, 20-job, 30-job, 50-job, and
100-job problem. The processing times, Pi follow
uniform distribution U(1,10). The due dates, Di have
been generated by using Di=RTi +Pi*k where k is
uniformly distributed U(1,4) and ready times, RTi follow
uniform distribution U(0, 40). Moreover, delay and non-
delay scheduling strategies are randomly assigned to
each job. In GA experimentations, ten runs are made
for each case to keep the consistency.

5.2 Genetic Algorithm vs. Optimal Solution

The objective in this section is to test how good GA
performs when compared to the optimal solutions. After
various parameter combinations have been
experimented for each problem independently, the
results are shown in Tables 3 and 4.

Table 3. Results of GA and Mathematical Model

Genetic Algorithm Math Model Problem
Pop-size No. Gen Mut. rate Cro. rate Best Optimal

Deviation

10-job 30 1000 0.01 1 22 22
0

20-job 80 5000 0.01 1 240 240
0

30-job 450 5000 0.001 0.8 798 798
0

50-job 400 5000 0.001 0.8 3262 3194
2.12

100-job 1200 10000 0.010 0.07 15493 14572
6.32

Table 4. GA and Math Model CPU Times

Math Model Genetic Algorithm
Problem

No. Variables No. Constraints CPU time CPU time

10-job 142 61 2.8 sec. 3 sec.

20-job 482 121 7.1 sec. 63 sec.

30-job 1022 181 41.8 sec. 7 min, 16 sec.

50-job 2702 301 15 min, 25sec. 11 min.

100-job 10402 601 31 min, 46 sec. 22 min, 13 sec.

It can be easily seen that GA can achieve optimal
solutions in small problems such as 10-job, 20-job, and
30-job problem. However, GA took longer CPU time to
each the optimal solution compared to mathematical
model, especially in 20-job and 30-job categories. In
50-job category, GA could not find the optimal solution
but reached 2.12% away from it. Furthermore, in 100-
job category, although mathematical model was unable
to achieve optimality due to memory limitation of the
computer, partial solution coming from mathematical
model was still better than what GA could obtain. From
another perspective, GA was significantly much faster
than mathematical model for 50-job and 100-job
problems. It is expected that as the problem size goes
even higher, the number of variables and constraints of

the mathematical model will increase dramatically,
which prolongs the computational time. Hence, this
limits the use of mathematical model to solve even
larger problems.
Table 5. Comparison of different scheduling strategies

GA best solution (frequency) Math Model Problem
Delay Non-delay Random Optimal

10-job 22 (10) 22 (8) 22 (10) 22

20-job 241 241 240 (5) 240

30-job 800 799 798 (2) 798

50-job 3341 3262 3351 3194

100-job 16322 15493 15883 14572

Süer et al. 169

IJIEM

Table 6. Results of Different Assignment Strategies
10-job 20-job 30-job 50-job 100-job

Run
Delay Non-delay Random Delay Non-delay Random Delay Non-delay Random Delay Non-delay Random Delay Non-delay Rando

m

1 22 24 22 241 241 242 800 801 800 3381 3280 3391 15988 15389 15677

2 22 24 22 244 241 243 826 800 799 3394 3267 3401 15813 15444 15534

3 22 22 22 242 243 242 820 802 798 3401 3287 3379 16100 15459 15452

4 22 22 22 241 241 242 844 801 799 3366 3272 3399 16020 15438 15499

5 22 22 22 242 241 240 838 802 801 3341 3262 3402 15892 15334 15601

6 22 22 22 242 242 240 848 800 801 3371 3288 3388 15931 15411 15401

7 22 22 22 244 241 240 805 799 799 3352 3279 3375 16044 15326 15544

8 22 22 22 242 243 240 805 802 804 3345 3293 3369 16101 15206 15534

9 22 22 22 242 242 241 823 800 799 3399 3281 3361 15923 15399 15501

10 22 22 22 242 241 240 811 802 798 3402 3284 3351 15873 15276 15632

Best 22 22 22 241 241 240 800 799 798 3341 3262 3351 15813 15206 15401

Worst 22 24 22 244 243 243 848 802 804 3402 3293 3402 16101 15459 15677

Mean 22 22.4 22 242.2 241.6 241 822 800.9 799.8 3375.2 3279.3 3381.6 15968.5 15368.2 15537.5

STDEV 0 0.84 0 1.03 0.84 1.155 17.06 1.10 1.81 23.71 9.73 17.62 97.87 81.54 82.49
Freq 10 8 10 0 0 5 0 0 2 0 0 0 0 0 0

However, GA can still be used to find acceptable
feasible solutions for those problems. Therefore, it can
be concluded that GA performed well with respect to
both small and large problems and it could find optimal
or near optimal solutions in this experimentation.

5.3 Comparison of Different Scheduling Strategies

Since the proposed GA has proven to provide
competitive results, the performance of three different
assignment strategies, which are random, delay only
and non-delay only, are compared in this section by
using jobs generated in 6.1. Meanwhile, the assignment
strategy of each job was forced to be kept the same
during mutation when delay only and non-delay only
strategies were applied. Results given in Tables 5 and
6 indicate that strategy selection was not significantly
important in 10-job category as all three strategies were
able to find the optimal solution.

On the other hand, random strategy was more effective
than delay and non-delay in 20-job and 30-job
categories based on the best as well as the average
solutions. Furthermore, non-delay strategy showed to
be more robust in that it could get results with lower
standard deviation compared to delay and random
strategies. In the mean time, it resulted in most
favorable worst values almost in all problem types.

5.4 Parameter Analysis

In this section, various parameters, including population
size, number of generations, and etc., are tested. 20-
job problem is set as the benchmark problem in this
case, and 10 GA runs are performed in each of the
experimentation in the followings. Meanwhile, crossover
rate is set as 1, and 0.01 is assigned as mutation
probability.
With population size fixed at 80 and number of
generations increasing from 1000 to 4000, the minimum
total tardiness decreases regardless of scheduling

strategies as shown in Figure 6. Meanwhile, one
observation can be made is that the total tardiness
value did not improve even if number of generations
were increased to 5000 for all three strategies.

Total Tardiness vs Number of Generations

238
240
242
244
246
248

0 1000 2000 3000 4000 5000 6000

Number of Generations

To
ta

l T
ar

di
ne

ss

Delay Nondelay Random

Figure 6. Number of Generations vs. Total Tardiness

From another perspective, while the number of
generations is kept to be 5000, the lowest total
tardiness values have been obtained when population
size is 60 or higher. In this case, non-delay scheduling
strategy was not affected by increased population size
at all.

Total Tardiness vs Population Size

239
240
241
242
243
244
245

0 20 40 60 80 100 120

Population Size

To
ta

l T
ar

di
ne

ss

Delay Nondelay Random

Figure 7. Population Size vs. Total Tardiness

170 Süer et al.

IJIEM

Moreover, random strategy showed mixed results and
delay strategy improved as the population size
increased from 20-60. However, when population size
increased beyond 60 in all three cases, no
improvement was observed.

Total Tardiness vs Mutation Probability

0

100

200

300

400

0 0.05 0.1 0.15 0.2 0.25

Mutation Probability

To
ta

l T
ar

di
ne

ss

Delay Nondelay Random
Figure 8. Total Tardiness vs. Mutation Probability

The final test is generated by changing the mutation
probability, while number of generations remains to be
5000 as the previous case. Based on the best results
from delay, non-delay and random strategies shown in
Figure 8, the lowest total tardiness values have been
obtained for mutation probability of 0.01 for all
strategies.

6. CONCLUSIONS
In this paper, genetic algorithm as well as a
mathematical model is proposed for a single machine
scheduling problem with nonzero ready times to
minimize the total tardiness. Although single machine
scheduling problem has been widely studied in the
literature, nonzero ready times have been rarely
considered. Furthermore, with three different
scheduling strategies integrated for each job
independently, a new GA chromosome representation
is created in this case, which further affects the genetic
operators.

The results are encouraging in terms of solution quality
as well as speed. GA could find near optimal or optimal
solutions for the problems solved during
experimentation. It can be concluded that GA can find
optimal solutions for small problems. As to big
problems, compared with mathematical model, GA may
be preferable due to lower computational requirements
even though it could not always reach the optimal
solutions. On the other hand, the user can try all three
scheduling strategies, which are Delay, Non-delay and
Random, if there is enough time to solve the problem
on hand when using GA. Otherwise, non-delay strategy
may be a good option if the user has very limited time
and cannot even make replications. However, it would
be wise to try random strategy as well, if time permits,
since it found the optimal solution more often than
others. Finally, increasing number of generations
mostly helped to reduce the total tardiness. However,
population size beyond 60 did not affect solution quality
in this experimentation at all. The computational time
requirements grew almost linearly as the number of

generations increased and finally lower mutation
probability produced better results.

7. REFERENCES
[1] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan,

A.H.G. (1979). Optimization and approximating in deterministic
sequencing and scheduling: a survey, Ann. Discrete Math. 4,
287-326

[2] Du, J., and Leung, J. (1990). Minimizing total tardiness on one
machine is NP-hard, Mathematics of Operation Research, Vol
15, no 3.

[3] Schrage, L.E. and Baker, K.R. (1978). Dynamic programming
solution of sequencing problems with precedence constraints.
Operations Research, 26, 444-449

[4] Hirakawa, Y (1999). A quick optimal algorithm for sequencing on
one machine to minimize total tardiness. Int J Prod Econ, 60-61,
20, 549-555

[5] Kondakei, et al. (1994). An efficient algorithm for the single
machine tardiness problem. Int J Prod Econ, 36, 2, 213-219

[6] Panneerselvam, R. (1991). Modeling the single machine
scheduling problem to minimize total tardiness and weighted
total tardiness. Int J Manage Syst 7, 1, 37-48

[7] Panneerselvam, R. (2006). Simple heuristic to minimize total
tardiness in a single machine scheduling problem. Int J Adv
Manuf Technol, 30, 722-726

[8] Potts, C.N. and Van Wassenhove, L.N. (1982). A decomposition
algorithm for the single machine total tardiness problem.
Operations Research Letters, 1, 177-182

[9] Holsenback, J.E., and Russell, R.M. (1992). A heuristic algorithm
for sequencing on one machine to minimize the total tardiness.
Journal of Operations Research Society, vol. 43, 53- 62, 1992.

[10] Panwalkar, S.S., Smith, M.L., and Kolamas, C.P. (1993). A
heuristic for the single machine tardiness problem. European
Journal of Operations Research, 70, 304- 310.

[11] Alidaee, B., and Rosa, D. (1997). Scheduling parallel machines
to minimize total weighted and unweighted tardiness. Computers
& Operations Research, Vol 24, No.8, 775 – 788.

[12] Baker, K. R., and Bertrand J. W. (1982). A dynamic priority rule
for scheduling against due-dates, Journal of Operational
Management, 3, 37-42.

[13] Gupta, N. D., and Chantaravaraparan, S. (2007). Single machine
group scheduling with family setups to minimize total tardiness.
International Journal of Production Research, 1-16.

[14] Baptiste, P. (2000). Scheduling equal-length jobs on identical
parallel machines, Discrete Appl. Math., 103, 1, 21-32

[15] Koulamas, C. and Kyparisis, G.J. (2001). Single machine
scheduling with release times, deadlines, and tardiness
objectives. European Journal of Operational Research, 447-453,
133.

[16] Kanet, J., and Li, X. (2004). A weighted modified due date rule
for sequencing to minimize weighted tardiness. Journal of
Scheduling, Vol 7, 261- 276.

[17] Tian, Z.J. et al. (2005). On the single machine total tardiness
problem. European Journal of Operations Research, 165, 3,
843-846

[18] Tian. Z.J. et al. (2006). An algorithm for scheduling equal-length
preemptive jobs on a single machine to minimize total tardiness.
J Sched, 9, 343-346

[19] Franca, P.M., Mendes, A., and Moscato, P. (2001). A memetic
algorithm for the total tardiness single machine scheduling
problem. European Journal of Operations Research 132, 1, 224–
242

[20] Maheswaran, R. et al. (2005). A meta-heuristic approach to
single machine scheduling problems. The International Journal
of Advanced Manufacturing Technology, 25, 772-776

[21] Feldmann, M. and Biskup, D. (2003). Single-machine scheduling
for minimizing earliness and tardiness penalties by meta-
heuristic approach. Computers and Industrial Engineering
archive 44, Issue 2 Special issue: Focused issue on applied
meta-heuristics, 307-323

Süer et al. 171

IJIEM

[22] Cheng, T.C.E., Lazarev, A., and Gafarov, E.R. (2009).A hybrid
algorithm for the single-machine total tardiness problem.
Computers and Operations Research, 36, 2, 308-315

[23] Vallada, E. et al. (2008). Minimizing total tardiness in the m-
machine flowshop problem: A review and evaluation of heuristic
and metaheuristics. Computers and Operations Research, 35, 4,
1350-1373

[24] Dessouky, M.I. and Deogun, J.S. (1981). Sequencing jobs with
unequal ready times to minimize mean flow time. SIAM journal of
Computing, 10, 192-202

[25] Deogun, J.S. (1983). On scheduling with ready times to minimize
mean flow time. The Computer Journal, 26, 320-328

[26] Süer, G.A. et al. (2003). Evolutionary programming for
minimizing the average flow time in the presence of non-zero
ready times. Computers and Industrial Engineering, 45, 331-344

[27] Holland, J.H. (1975). Adaptations in natural and artificial
systems. Ann Arbor: The University of Michigan Press.

[28] Goldberg, D.E. (1989). Genetic Algorithms in Search
Optimization and Machine Learning. Addison Wesley.

[29] Gen, M. and Chen, R. (1997). Genetic Algorithm and
Engineering Optimization. John Wiley & Sons, Inc. New York

[30] Bäck, T. (1996). Evolutionary Algorithm in Theory and Practice.
Oxford University Press, 120

[31] Kamat, K.U. (2007). Minimizing total tardiness and crew size in
labor intensive cells using mathematical models. Master’s thesis,
Ohio University

Genetski algoritam za minimalizaciju ukupne
tromosti u rasporedu jedne mašine

Süer G. A., Yang X., Alhawari O. I., Santos J.
and Vazquez R.

Primljen (9. jul 2012.); Recenziran (22. septembar 2012.); Prihvaćen (30. septembar 2012.)

Apstrakt
Minimalizacija ukupne tromosti u rasporedu jedne mašine je poznata kao NP-hard. U ovom radu, problem se
proširuje da bi uključio ne-nulta vremena spremnosti, a apropriacija poslova nije dozvoljena. Prvo, razvijen je
matematički model. Zbog računarskih kompleksnosti sa matematičkim modelom, takođe je predložen i
pristup genetskog algoritma (GA) i njegove performanse su kasnije upoređene s optimalnim rešenjima.
Rezultati pokazuju da GA može da pronađe optimalno rešenje za male probleme i približna optimalna
rešenja za veće probleme. Rezultati takođe pokazuju da među strategijama Delay-only, Non-delay-only i
Random, Non-delay strategija je proizvela mnogo rogobatnija rešenja dok je Random strategija pronašla
optimalno rešenje u kategorijama manjih problema.

Ključne reči: raspored za jednu mašinu, tromost, genetski algoritmi, matematičko modeliranje
.

