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Abstract  
Minimizing total tardiness in single machine scheduling is known as NP-hard. In this paper, the problem is 
extended to include non-zero ready times and the preemption of jobs is not allowed. First, a mathematical 
model is developed. Due to computational complexities with the mathematical model, a Genetic Algorithm 
approach is also proposed and later its performance is compared with optimal solutions. The results show 
that GA can find optimal solution for small problems and near optimal solutions for large problems. The 
results also show that among Delay-only, Non-delay-only, and Random strategies, Non-delay strategy 
produced more robust solutions whereas random strategy found the optimal solution in smaller problem 
categories.  
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1. INTRODUCTION 

Scheduling is one of the most critical functions in any 
manufacturing organization due to limited resources, 
increased customer expectation and fierce competition 
both domestically and internationally. Meanwhile, cost 
reduction and profit maximization continue to be strong 
motivations for all manufacturing companies in the 
environment of globalization and internationalization. As 
tardiness relates to operational costs, manufacturing 
scheduling can affect the performance of a company 
and hence chance of its survivability.  
This paper focuses on single machine scheduling 
problem with nonzero ready times, which can be 
characterized as 1│rj│ΣTi using the Graham and Lawler 
classification [1]. Furthermore, it is assumed that all 
jobs arrive at different times with their arrival times 
known in advance. Even though the single machine 
manufacturing systems are rare in practice, the results 
can be used for bottleneck machines in production lines 
as well as manufacturing cells such as rotary injection 
molding machine in a shoe manufacturing cell, casting 
machine in a jewelry manufacturing cell, packing 
machine in a finishing line, robot in a highly flexible 
manufacturing cell, and so on. The objective is to 
decide the job sequence in order to minimize the total 

tardiness (TT), which measures the summation of 
tardiness of all the jobs, i.e. TT = ΣTi where Ti = max{0, 
Ci – Di}, Ci is the completion time, Di is the due date, 
and Ti is the tardiness of job i. A summary of solution 
techniques is given in Figure 1 for single machine 
scheduling problem with various constraints. The 
mathematical model can be used to reach the optimal 
solution in the case of zero ready times. However, when 
it comes to nonzero ready times, two possibilities can 
be considered; (1) preemption allowed and (2) 
preemption not allowed.  

 

Figure 1. Summary of total tardiness in single machine 
scheduling 
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In the former case, a job’s processing could be 
interrupted and another job can be assigned. In the 
latter case, once a job is assigned, it has to be 
processed to completion without any interruption. Here, 
two strategies have to be considered; 2a) assign one of 
the available jobs when the machine becomes available 
(Non-delay) or 2b) keep the machine idle until a 
particular job arrives (Delay). 
This problem is known as NP-hard and some branch-
and-bound procedures have been suggested for similar 
problems. This paper focuses on “preemption-not-
allowed” case with the objective of minimizing the total 
tardiness by using genetic algorithm (GA) and 
mathematical model, while defining delay and non-
delay strategies for each job independently makes this 
problem even more complicated.  
Table 1. Dataset for example problem 1  
Job 1 2 3 4 5 

Processing time 2 2 9 4 6 

Ready time 10 11 26 12 18 

Due date 12 13 35 24 24 

Strategy Delay Non-
delay 

Delay Delay Non-
delay 

 

A job sequence of 1-2-5-4-3 along with delay and non-
delay assignment strategies for each job independently 
is shown in Figure 2 with a simple example problem 
given in Table 1.  

Job Idle Time (IT) 1 2 4 5 IT 3 
Ci 10 12 14 18 24 26 35 
Ti   1     

Figure 2. Gantt chart for example problem 1 

Steps for generating the sequence are listed in Table 2, 
which gives the total tardiness to be 1 for this particular 
example. 
Table 2. Steps for generating sequence for example problem 1 

Step Next 
job Strategy Job 

Available? Decision 
Start Time/ 
Completion 
Time 

1 1 Delay no, r1=10 wait until 
r1, then 
assign 

12/10 

2 2 Non-
delay 

yes, r2=11 assign 14/12 

3 5 Non-
delay 

no, r5=18 consider 
next job  

-/- 

4 4 Non-
delay 

yes, r4=12 assign 18/14 

5 5 Non-
delay 

Yes, r5=18 assign 24/18 

6 3 Delay yes, r3=26 Wait until 
r3, then 
assign  

35/26 

 
The remainder of this paper is organized as follows: 
section 2 presents the literature review of various 
solution techniques in single machine scheduling. In 
section 3, different genetic algorithm strategies are 
proposed. Furthermore, a MIP mathematical model, 
which provides optimal solutions, is described in details 
in section 4. In section 5, data analysis as well as 

computational results is presented. Finally, a brief 
summary is concluded in section 6.  

2. LITERATURE REVIEW  
Scheduling a set of jobs which are to be processed on 
a single machine to minimize total tardiness is known 
as the single machine total tardiness problem (SMTTP). 
Due to the complexity of SMTTP, minimizing total 
tardiness has been proved to be NP-hard by Du and 
Leung [2] with a given set of independent jobs on one 
single machine, meaning that it is impossible to find an 
optimal solution without using the enumerative 
algorithm. Moreover, computational time increases 
exponentially as the problem size grows. There has 
been various research works on single machine 
scheduling problem. Algorithms, including branch-and-
bound approach, dynamic programming algorithm, and 
heuristic approaches have been applied to SMTTP.     
Optimization approaches, such as branch-and-bound 
approach, dynamic programming algorithm, and 
mathematical model can guarantee the optimality. 
Schrage and Baker [3] developed a dynamic 
programming approach to the SMTTP. Hirakawa [4] 
proposed a quick branch-and-bound based optimal 
algorithm for SMTTP to minimize total tardiness, based 
on a branch-and-bound algorithm. Kondakci et al. [5] 
presented a new branch-and-bound algorithm for 
SMTTP. Furthermore, a mathematical modeling 
approach was developed by Panneerselvam [6] to 
minimize total tardiness and weighted total tardiness as 
well. Although mathematical model can provide optimal 
solutions, the number of constraints and variables 
become very large as the problem size grows. 
Therefore, Panneerselvam [7] argued that the 
mathematical model is limited to solve only small size 
problems due to the limitation of any operations 
research software.    
In this case, heuristic approaches become a good 
option since they are designed with least numbers of 
steps to find near optimal solutions in reasonable time 
periods. Potts and Van Wassenhove [8] developed an 
algorithm, which decomposed the problem into 
subproblems so that they were sufficiently small in 
order to be solved by dynamic programming. Problems 
with up to 100 jobs were tested in this case. A net 
benefit of relocation heuristic (NBR) was developed by 
Holsenback and Russell [9], which avoided the 
enumeration of all possible sequences and could 
determine which job should come last to reduce the 
tardiness. Panwalker et al. [10] presented a P-S-K 
heuristic which was substantially better than others in 
respect of computational time. Alidee and Rosa [11] 
studied the group scheduling problem for minimizing 
the Total Tardiness on a single machine with a large 
number of jobs and machines and suggested various 
heuristic algorithms. Meanwhile, both weighted and 
unweighted tardiness were considered in their work by 
utilizing the Modified Due Date (MDD) algorithm 
proposed by [12]. For the same problem in a small 
scale, Gupta and Chantaravaraparan [13] proposed a 
mixed integer linear programming model and developed 
heuristics which are modifications of the NBR Heuristic 
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(1992) and the PSK Heuristic (1993). More recently, 
Baptiste [14] presented an algorithm for SMTTP with 
release dates and preemption jobs. Koulamas and 
Kyparisis [15] developed a polynomial time algorithm 
for SMTTP in the presence of deadlines. However, it 
was found that the algorithm could be extended only 
when deadlines and due dates were compatible and all 
job release times were equal. Later, the same algorithm 
was applied to single machine scheduling problems 
with setup times which were proportionate to the length 
of the already scheduled jobs, defined as past-
sequence-dependent setup times (2008). Kanet and Li 
[16] generated a rule for Weighted Modified Due Date 
(WMDD) and compared it against other rules for 
weighted tardiness. Furthermore, Tian et al. [17] 
studied the single machine scheduling problem to 
minimize the total tardiness. Meanwhile, some 
optimality properties have been identified based on a 
polynomially solvable special case. As an extended 
research, an O(n2) time algorithm was proposed by 
Tian et al. [18] to minimize total tardiness of n equal-
length preemptive jobs on a single machine.  
To further improve the solution quality, meta-heuristics 
is introduced as an alternative approach compared to 
heuristics. Franca et al. [19] proposed a genetic 
algorithm (GA) as well as new meta-heuristic 
evolutionary algorithm, named memetic algorithm, for 
single machine scheduling problems with due dates 
and sequence dependent setup time. Later, memetic 
algorithm was further applied by Maheswaran et al. [20] 
to solve the single machine total weighted tardiness 
problems. Meta-heuristics developed by Feldmann and 
Biskup [21], including evolutionary strategies, simulated 
annealing, and threshold accepting, are efficient in 
obtaining near-optimal solutions by solving 140 
benchmark problems with up to 1000 jobs. Moreover, 
an Ant Colony Optimization (ACO) was proposed by 
Cheng et al [22] for SMTTP. Vallada et al. [23] 
presented an evaluation of heuristics and meta-
heuristics for the m-machine flowshop scheduling 
problem with the objective of minimizing total tardiness.      
Even though single machine scheduling problem has 
received considerable amount of attention in the past, 
ready times are assumed to be zero in most of the 
problem definitions. In this paper, non-zero ready times 
is introduced to SMTTP. Furthermore, for studies that 
address total tardiness in the literature, they allow 
preemption or make very specific assumptions such as 
deadlines and due dates are compatible and all job 
release times are equal, etc. However, in this paper, all 
jobs Delay, all jobs Non-delay and Mixed strategies 

(some jobs delay and others non-delay) are considered 
in minimizing total tardiness and preemption is not 
allowed. This is believed to be a significant contribution 
to the literature, since there is no other literature 
addressing exactly the same problem to the best 
knowledge of authors. Dessouky and Deogun [24] 
presented a branch-and-bound procedure to minimize 
the average flow time when there are jobs with non-
zero ready times. Later, Deogun [25] improved the 
previous approach by dividing the problem into 
subproblems and then applied branch-and-bound 
algorithm to each subproblem. Recently, Süer et al. [26] 
proposed an evolutionary programming (EP) to 
minimize the average flow time of a single machine 
scheduling problem in the presence of non-zero times 
and when preemption is not allowed. There are also 
some other researchers focusing on weighted 
completion time problem with nonzero ready times. In 
this paper, nonzero ready time as well as preemption 
not allowed situation are introduced, making the 
scheduling task more complicated. 

Genetic algorithm (GA), first proposed by John Holland 
in the 1960s [27] and further developed by Goldberg 
[28], is a heuristic search algorithm that simulates the 
process of natural selection and evolution. In building 
genetic algorithm, five fundamental issues that affect 
the performance of GA must be addressed: 
chromosome representation, initialization of the 
population, selection strategy, genetic operators, and 
termination criterion. In the following subsections, those 
issues are introduced and described specifically for the 
proposed genetic algorithm.  

3. GENETIC ALGORITHM SCHEME 
3.1 Chromosome Representation 

For any GA, the chromosome representation 
determines how the problem is structured in GA, as well 
as the genetic operators that can be used. Determining 
an appropriate representation of the variables is 
necessarily the first step in designing the GA. In this 
paper, a representation is developed in which each 
gene corresponds to the position of a job in the 
sequence. Specifically, with N genes in each 
chromosome, position i indicates the ith job in the 
sequence as shown in Figure 3. Since delay and non-
delay strategies are assigned to every job 
independently, each gene is represented by a pair of 
parameters (X,Y), while X denotes the job being 
assigned and Y shows the scheduling strategy adapted 
(1 for delay, 2 for non-delay).  

 
 

Position 1 Position 2 Position 3 Position 4 … Position N 
1st job in 
sequence 

2nd job in 
sequence 

3rd job in 
sequence 

4th job in 
sequence … Nth job in sequence 

(7,1) (5,2) (4,1) (3,2) … (10,1) 

Job 7 Job 5 Job 4 Job 3 … Job 10 

delay non-delay Delay non-delay  Delay 
 

Figure 3. Gene representation for the scheduling problem 
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3.2 Fitness Function 

In this paper, the objective is to minimize the total 
tardiness in the presence of non-zero ready times, 
which can be represented as the summation of 
tardiness values from all jobs as given in equation (1). 

                     
∑
=

=
N

i
iTTT

1
                                (1) 

3.3 Initialization of the Population 

The initial population consists of s chromosomes. Since 
GA iteratively improves existing solutions, a completely 
random seeding of the initial population is employed in 
this paper. Therefore, for each chromosome, the 
probability that a job can be assigned to the 1st position 
is the same for all jobs. Once the 1st job in the 
sequence is determined and assigned, it is removed 
from the list and the remaining (N-1) jobs are to be 
assigned. The probability that any of the remaining jobs 
will be assigned to the 2nd position in the sequence is 
equal for all of the remaining jobs. As soon as the 2nd 
position is filled, remaining (N-2) jobs compete for the 
3rd position and the assignment process continues until 
all jobs are assigned to a position. For scheduling 
strategy assignment, equal probability has been given 
to delay and non-delay strategies. In this case, every 
job will have a probability of 50% to be assigned either 
delay or non-delay strategy.   

3.4 Reproduction 

In this paper, a roulette wheel-based reproduction 
strategy is used. In this case, a fitness function-based 
reproduction probability is assigned to each 
chromosome to generate parents for mating. Since 
reproduction probability should increase as the total 
tardiness decreases, a simple transformation function is 
applied to give higher reproduction probability to those 
chromosomes with lower total tardiness. First, all total 
tardiness values are added as shown in equation (2). A 
constant “1” is added to every fitness function to avoid 
“division by zero”. Then, adjusted fitness values are 
computed for each chromosome by dividing the total 
fitness value by the corresponding fitness value 
(equation 3). Finally, reproduction probability is 
calculated for each chromosome based on the adjusted 
fitness value as shown in equation (4). Based on the 
reproduction probability, random numbers are 
generated to select mating parents. 
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Where, FFi is total tardiness for chromosome i; TFF is 
sum of total tardiness values; AFi is adjusted fitness 
value for chromosome i; pi is reproduction probability for 
chromosome i. 

3.5 Crossover Operator   

For each pair, whether or not the crossover operator 
will be applied is tested first. If a randomly generated 
number is lower than the crossover probability, then 
crossover strategy is applied to the pair. The probability 
of crossover determines the rate at which the crossover 
is applied. A higher crossover probability can introduce 
new strings quickly into the population, while a lower 
one can cause stagnation in neighborhood search.  
A single cut point crossover strategy from [29] is 
applied in the proposed GA. Assume that cut point has 
been randomly determined after the 3rd gene of the 
parents as shown in Figure 4. The last three genes are 
swapped thus generating two new offspring, while the 
first three genes are kept the same. However, it can be 
easily observed that both offspring are infeasible since 
job 6 is missing in the 1st offspring and job 2 is missing 
in the second one. Therefore, an offspring repair 
procedure is introduced to both offspring by replacing 
the repeated genes with the missing ones. Repeated 
genes are replaced by the missing ones in the order 
they appear in the other parent.   

 
Figure 4. Single cut point crossover strategy 

3.6 Mutation Operator   

Mutation rate is the probability with which each gene in 
a new chromosome undergoes a random change after 
a selection process. A low mutation rate can help to 
prevent any gene from getting stuck to a single value, 
while a high mutation rate will result in random search 
eventually.   

In the proposed GA, two kinds of mutation operators 
are introduced, which are job-based mutation and 
scheduling strategy-based mutation. Both mutation 
operators are applied to each gene independently. For 
job-based mutation, which was proposed by Gen and 
Chen [29], randomly selected job positions are 
swapped. As an example, mutation is applied to job 3 
by swapping with job 5 randomly determined. For 
scheduling strategy-based mutation, current strategy of 
one job can be changed to the other one. Figure 5. 
shows that non-delay strategy of job 4 is changed to 
delay after mutation. 
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Figure 5. Job-based and scheduling strategy-based mutation 

3.7 Selection Strategy 

To choose chromosomes from current parents as well 
as offspring for the next generation, roulette wheel 
selection scheme from Bäck [30] is applied in this paper 
where good individuals have more chance to survive in 
the next generation. Meanwhile, roulette wheel 
selection can introduce certain randomness to the 
current population to increase the diversity. In roulette 
wheel selection, a probability of being selected is 
assigned to individuals, which is directly proportionate 
to goodness of their fitness function values. Then, 
randomly generated numbers determine chromosomes 
going to the next generation. In this case, chromosome 
replication in each generation is allowed.         

3.8 Termination Criterion 

The GA moves from one generation to another by 
selecting parents and producing offspring until a 
termination criterion is met. The most frequently used 
stopping criterion is a specified maximum number of 
generations. Moreover, since GA will force much of the 
entire population to converge to a single solution, some 
acceptable threshold can be established as the 
termination criterion, such as sum of the deviation 
among individuals and maximum number of 
generations without improvement. The 
experimentations in this paper employ a maximum 
number of generations as the stopping criterion.      

4. MATHEMATICAL MODEL 
A mathematical model is developed in this paper to find 
the sequence of N jobs on a single machine such that 
the total tardiness is minimized. Previously, [13] 
developed an integer programming for group 
scheduling problems to minimize total tardiness on a 
single machine for zero ready times. Kamat [31] 
proposed a math model to minimize the total tardiness 
in a multi-cell environment with zero ready times. 
However, to the best knowledge of authors, the 
mathematical model proposed in this paper with non-
zero ready times restrictions has not been reported in 
the literature before. It is assumed that the processing 
times, ready times and due dates are known for all jobs. 
ILOG’s Optimization Programming Language (OPL), 
which supports linear and quadratic objectives and 

constraints, as well as integer and real variables, is 
used to solve this mathematical model. 
Objective Function: 

Minimize ∑
=

=
N

i
iTTT

1
                                 (5) 
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(11) )1,0(∈ijX  integer; jC , jCT , jT , jR , 0TT ≥  

Where,  
Xij =1, if job i is processed in sequence j; 0, otherwise 
Cj is initial completion time of job in jth sequence 
(without considering ready times) 
CTj is final completion time of job in jth sequence 
(considering ready times) 
Tj is tardiness value of job in jth sequence  
Rj is waiting time of job in jth sequence  
TT is total tardiness 
Di is due date of job i 
Pi is processing time of job i 
RTi is ready time of job i 
N is Number of jobs 

The objective function given in equation (5) is to 
minimize the sum of tardiness values of all jobs. 
Equation (6) computes the initial completion time of job 
in jth position without considering the ready times, i.e., 
sums the initial completion time of the previous job and 
its own processing time. As the key constraint in this 
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model, equation (7) presents the waiting time of each 
job. On one hand, if the ready time of the job to be 
processed is smaller than the initial completion time of 
the previous job plus waiting times of all previous jobs, 
there will be no extra waiting time for the job to be 
available. On the other hand, it will require additional 
waiting time until the job becomes available. Equation 
(8) gives the actual completion times of each job, while 
the tardiness of each job is described in equation (9). 
When the right hand side is positive, tardiness takes a 
positive value and when it is negative, tardiness 
becomes zero. Equation (10) guarantees that only one 
job is assigned to each position. Similarly, equation (11) 
promises that each job is assigned to only one position.  

5. EXPERIMENTATION PERFORMED 
In this section, the experimentation performed by using 
the mathematical model and the proposed genetic 
algorithm approach is described. All of the experiments 
were made using Dell PC with dual 2.40GHz CPU and 
2.0 GB RAM.  

5.1 Generating Datasets 

For test purposes, five different problems are generated 
randomly, including 10-job, 20-job, 30-job, 50-job, and 
100-job problem. The processing times, Pi follow 
uniform distribution U(1,10). The due dates, Di have 
been generated by using Di=RTi +Pi*k where k is 
uniformly distributed U(1,4) and ready times, RTi follow 
uniform distribution U(0, 40). Moreover, delay and non-
delay scheduling strategies are randomly assigned to 
each job. In GA experimentations, ten runs are made 
for each case to keep the consistency.  

5.2 Genetic Algorithm vs. Optimal Solution 

The objective in this section is to test how good GA 
performs when compared to the optimal solutions. After 
various parameter combinations have been 
experimented for each problem independently, the 
results are shown in Tables 3 and 4.  

 
Table 3. Results of GA and Mathematical Model  

 

Genetic Algorithm Math Model Problem 
Pop-size No. Gen Mut. rate Cro. rate Best Optimal 

Deviation 

10-job 30 1000 0.01 1 22 22 
0 

20-job 80 5000 0.01 1 240 240 
0 

30-job 450 5000 0.001 0.8 798 798 
0 

50-job 400 5000 0.001 0.8 3262 3194 
2.12 

100-job  1200 10000  0.010   0.07 15493 14572 
6.32 

 

Table 4. GA and Math Model CPU Times  

Math Model Genetic Algorithm 
Problem 

No. Variables No. Constraints CPU time CPU time 

10-job 142 61 2.8 sec. 3 sec. 

20-job 482 121 7.1 sec. 63 sec. 

30-job 1022 181 41.8 sec. 7 min, 16 sec. 

50-job 2702 301 15 min, 25sec. 11 min. 

100-job 10402 601 31 min, 46 sec. 22 min, 13 sec. 
 

It can be easily seen that GA can achieve optimal 
solutions in small problems such as 10-job, 20-job, and 
30-job problem. However, GA took longer CPU time to 
each the optimal solution compared to mathematical 
model, especially in 20-job and 30-job categories. In 
50-job category, GA could not find the optimal solution 
but reached 2.12% away from it. Furthermore, in 100-
job category, although mathematical model was unable 
to achieve optimality due to memory limitation of the 
computer, partial solution coming from mathematical 
model was still better than what GA could obtain. From 
another perspective, GA was significantly much faster 
than mathematical model for 50-job and 100-job 
problems. It is expected that as the problem size goes 
even higher, the number of variables and constraints of  

the mathematical model will increase dramatically, 
which prolongs the computational time. Hence, this 
limits the use of mathematical model to solve even 
larger problems.  
Table 5. Comparison of different scheduling strategies 

GA best solution (frequency) Math Model Problem 
Delay Non-delay Random Optimal 

10-job 22 (10) 22 (8) 22 (10) 22 

20-job 241 241 240 (5) 240 

30-job 800 799 798 (2) 798 

50-job 3341 3262 3351 3194 

100-job 16322 15493 15883 14572 
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Table 6. Results of Different Assignment Strategies 
10-job 20-job 30-job 50-job 100-job 

Run 
Delay Non-delay Random Delay Non-delay Random Delay Non-delay Random Delay Non-delay Random Delay Non-delay Rando

m 

1 22 24 22 241 241 242 800 801 800 3381 3280 3391 15988 15389 15677

2 22 24 22 244 241 243 826 800 799 3394 3267 3401 15813 15444 15534

3 22 22 22 242 243 242 820 802 798 3401 3287 3379 16100 15459 15452

4 22 22 22 241 241 242 844 801 799 3366 3272 3399 16020 15438 15499

5 22 22 22 242 241 240 838 802 801 3341 3262 3402 15892 15334 15601

6 22 22 22 242 242 240 848 800 801 3371 3288 3388 15931 15411 15401

7 22 22 22 244 241 240 805 799 799 3352 3279 3375 16044 15326 15544

8 22 22 22 242 243 240 805 802 804 3345 3293 3369 16101 15206 15534

9 22 22 22 242 242 241 823 800 799 3399 3281 3361 15923 15399 15501

10 22 22 22 242 241 240 811 802 798 3402 3284 3351 15873 15276 15632

Best 22 22 22 241 241 240 800 799 798 3341 3262 3351 15813 15206 15401

Worst 22 24 22 244 243 243 848 802 804 3402 3293 3402 16101 15459 15677

Mean 22 22.4 22 242.2 241.6 241 822 800.9 799.8 3375.2 3279.3 3381.6 15968.5 15368.2 15537.5

STDEV 0 0.84 0 1.03 0.84 1.155 17.06 1.10 1.81 23.71 9.73 17.62 97.87 81.54 82.49 
Freq 10 8 10 0 0 5 0 0 2 0 0 0 0 0 0 
 

However, GA can still be used to find acceptable 
feasible solutions for those problems. Therefore, it can 
be concluded that GA performed well with respect to 
both small and large problems and it could find optimal 
or near optimal solutions in this experimentation. 

5.3 Comparison of Different Scheduling Strategies 

Since the proposed GA has proven to provide 
competitive results, the performance of three different 
assignment strategies, which are random, delay only 
and non-delay only, are compared in this section by 
using jobs generated in 6.1. Meanwhile, the assignment 
strategy of each job was forced to be kept the same 
during mutation when delay only and non-delay only 
strategies were applied. Results given in Tables 5 and 
6 indicate that strategy selection was not significantly 
important in 10-job category as all three strategies were 
able to find the optimal solution.  

On the other hand, random strategy was more effective 
than delay and non-delay in 20-job and 30-job 
categories based on the best as well as the average 
solutions. Furthermore, non-delay strategy showed to 
be more robust in that it could get results with lower 
standard deviation compared to delay and random 
strategies. In the mean time, it resulted in most 
favorable worst values almost in all problem types. 

5.4 Parameter Analysis 

In this section, various parameters, including population 
size, number of generations, and etc., are tested. 20-
job problem is set as the benchmark problem in this 
case, and 10 GA runs are performed in each of the 
experimentation in the followings. Meanwhile, crossover 
rate is set as 1, and 0.01 is assigned as mutation 
probability. 
With population size fixed at 80 and number of 
generations increasing from 1000 to 4000, the minimum 
total tardiness decreases regardless of scheduling 

strategies as shown in Figure 6. Meanwhile, one 
observation can be made is that the total tardiness 
value did not improve even if number of generations 
were increased to 5000 for all three strategies. 

Total Tardiness vs Number of Generations
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Figure 6. Number of Generations vs. Total Tardiness 

From another perspective, while the number of 
generations is kept to be 5000, the lowest total 
tardiness values have been obtained when population 
size is 60 or higher. In this case, non-delay scheduling 
strategy was not affected by increased population size 
at all.  
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Figure 7. Population Size vs. Total Tardiness  
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Moreover, random strategy showed mixed results and 
delay strategy improved as the population size 
increased from 20-60. However, when population size 
increased beyond 60 in all three cases, no 
improvement was observed. 

Total Tardiness vs Mutation Probability
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Figure 8. Total Tardiness vs. Mutation Probability 

The final test is generated by changing the mutation 
probability, while number of generations remains to be 
5000 as the previous case. Based on the best results 
from delay, non-delay and random strategies shown in 
Figure 8, the lowest total tardiness values have been 
obtained for mutation probability of 0.01 for all 
strategies.   

6. CONCLUSIONS 
In this paper, genetic algorithm as well as a 
mathematical model is proposed for a single machine 
scheduling problem with nonzero ready times to 
minimize the total tardiness. Although single machine 
scheduling problem has been widely studied in the 
literature, nonzero ready times have been rarely 
considered. Furthermore, with three different 
scheduling strategies integrated for each job 
independently, a new GA chromosome representation 
is created in this case, which further affects the genetic 
operators.     

The results are encouraging in terms of solution quality 
as well as speed. GA could find near optimal or optimal 
solutions for the problems solved during 
experimentation. It can be concluded that GA can find 
optimal solutions for small problems. As to big 
problems, compared with mathematical model, GA may 
be preferable due to lower computational requirements 
even though it could not always reach the optimal 
solutions. On the other hand, the user can try all three 
scheduling strategies, which are Delay, Non-delay and 
Random, if there is enough time to solve the problem 
on hand when using GA. Otherwise, non-delay strategy 
may be a good option if the user has very limited time 
and cannot even make replications. However, it would 
be wise to try random strategy as well, if time permits, 
since it found the optimal solution more often than 
others. Finally, increasing number of generations 
mostly helped to reduce the total tardiness. However, 
population size beyond 60 did not affect solution quality 
in this experimentation at all. The computational time 
requirements grew almost linearly as the number of 

generations increased and finally lower mutation 
probability produced better results. 
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Apstrakt  
Minimalizacija ukupne tromosti u rasporedu jedne mašine je poznata kao NP-hard. U ovom radu, problem se 
proširuje da bi uključio ne-nulta vremena spremnosti, a apropriacija poslova nije dozvoljena. Prvo, razvijen je 
matematički model. Zbog računarskih kompleksnosti sa matematičkim modelom, takođe je predložen i 
pristup genetskog algoritma (GA) i njegove performanse su kasnije upoređene s optimalnim rešenjima. 
Rezultati pokazuju da GA može da pronađe optimalno rešenje za male probleme i približna optimalna 
rešenja za veće probleme. Rezultati takođe pokazuju da među strategijama Delay-only, Non-delay-only i 
Random, Non-delay strategija je proizvela mnogo rogobatnija rešenja dok je Random strategija pronašla 
optimalno rešenje u kategorijama manjih problema. 
 
Ključne reči: raspored za jednu mašinu, tromost, genetski algoritmi, matematičko modeliranje 
. 

 
 
 
 


