
International Journal of Industrial Engineering and Management (IJIEM), Vol.3 No 4, 2012, pp. 25-31
Available online at http:// www.iim.ftn.uns.ac.rs/ijiem_journal.php

ISSN 2217-2661

IJIEM

UDK: 004.4:338.465 Research paper

Low-Overhead Continuous Monitoring of Service Level
Agreements
Dušan Okanović

Assistant, Faculty of Technical Sciences, Novi Sad, Serbia, oki@uns.ac.rs

Milan Vidaković
Full professor, Faculty of Technical Sciences, Novi Sad, Serbia, minja@uns.ac.rs

Zora Konjović
Full professor, Faculty of Technical Sciences, Novi Sad, Serbia, ftn_zora@uns.ac.rs

Received (22 December 2011.); Revised (24 January 2012.); Accepted (06 February 2012.)

Abstract

Constant monitoring and verification of the software are required in order to assure the software meets
service levels required by the service consumer are met by the service provider. We propose a new
XML schema for defining service level parameters. In documents based on this schema we define
parts of application to be monitored, which metric is going to be used and what are expected values.
We present the DProf tool for adaptive continuous monitoring of software performance, which is based
on Kieker framework. The overhead generated by this system is lower then that of the other tools or
Kieker framework extensions. The system is implemented in Java, but, with minor modifications, it can
be used for .NET applications.

Key words: software monitoring, continuous monitoring, service level agreement

1. INTRODUCTION

It is necessary to monitor software in its operational
stage and environment, if we want to determine
whether the quality of service and service level
agreements are on a satisfactory level. While not all
errors show up during testing phase, it is a common
phenomenon for software performance and quality of
service to degrade over time [1], too. Software testing,
debugging, and profiling in development environments
hardly allow to detect errors and unpredicted events
that can occur after the software is deployed and used
in its production environment.
Service level agreement (abr. SLA) [2] is usually a part
of an agreement between service consumer and
service provider. Based on this document, service
provider is obliged not only to provide service, but also
to provide certain quality level of the service, too. SLAs
specify permanent monitoring and verification of IT
service levels. It specifies metrics to be used, service
management and reactions to agreement breaches. It
also contains time constraints, e.g. period of validity of
contract and frequency of measurements.
The life cycle of SLA [3] begins with the agreement
definition. It is then passed to the service provider.
Within service provider organization, duties are
assigned, and monitoring phase can begin. During this
phase, SLA parameters are monitored and data is
gathered. This data is analyzed and used for 1)
detection of violation of SLA and 2) service level

improvement. After data analysis, SLA is revised, and
the whole process continues from the beginning.
Graphic representation of this process' cycle is shown
in Fig. 1.

Figure 1. SLA lifecycle

To determine how software behaves under production
workload, continuous monitoring of that software is a
valuable option. Continuous monitoring of software is a
technique that provides a picture of the dynamic
behaviour of software under real usage, but often
results in a large amount of data. In the process of the
analysis, the obtained data can be used to reconstruct
architectural models and perform their visualization
(e.g., employing UML). In the development phase,
software developers usually utilize tools such as
debuggers and profilers. Although they provide a
picture of the software behaviour, they typically induce
a significant performance overhead – something which
is unacceptable for production use.

26 Okanović et al.

IJIEM

In order to check if software performance is in
compliance with SLA, we have developed the DProf
system. It performs continuous monitoring of software
and analyses gathered data. Based on this data and
our DProfSLA XML schema, DProf can find which part
of application is not in accordance with SLA. This
reduces time needed by developers to identify the
source of the problem and to solve it. DProfSLA
schema based documents are used to define required
service-levels in various metrics. System is extensible
so that users can define their own metrics and
implement measuring techniques.
The rest of the paper is structured as follows. Chapter 2
presents related work in the field. In chapter 3 we
present DProfSLA XML schema, while in chapter 4 we
give short description of our DProf system. Fifth chapter
gives an example of how DProf can be used, while
chapter 6 provides conclusion and guidelines for future
work.

2. RELATED WORK

Related work focuses on existing standards for SLA
documents definition (chapter 2.1) and monitoring tools
(chapter 2.2).

2.1 Overview of existing SLA standards
In order to automate service level management
process, SLAs must be defined in machine-readable
format. As shown by Tebbani et al. [4], there are only
few formal SLA specification languages. SLAs are
usually written in some spoken language. Authors
propose GXLA – XML specification for GSLA
(Generalized Service Level Agreement). GSLA is
defined by authors as a contract signed between two or
more parties, which is designed to create a measurable
common understanding of each party role. A role
presents the set of rules which define the minimal
service level expectations and obligations the party has.
GXLA is a XML schema which implements GSLA
information model. GXLA is composed of following
sections: schedule (temporal parameters of contract),
party (models involved parties), service package (an
abstraction used to describe services) and role (as
described). Creation and use of GXLA allows
automation of service-management process.
WSLA described in [5] is XML based and it is used to
specify service levels for web services. WSLA
document defines interested parties, metrics,
measuring techniques, responsibilities and courses of
action. Authors state that every SLA (and WSLA, too)
contain 1) information regarding agreeing parties and
their roles, 2) SLA parameters and measurement
specification and 3) obligations for each party.
Paschke et al [6] performed categorization scheme for
SLA metrics with the goal to support the design and
implementation of automatable SLAs.
Standard elements of each SLA are identified and
shown in: technical (service descriptions, service
objects, metrics and actions), organizational (roles,
monitoring parameters, reporting and change
management) and legal (legal obligations, payment,

additional rights, etc.). Authors categorized service
metrics in accordance with standard IT objects:
hardware, software, network, storage and help desk.
SLAs are grouped according to their intended purpose,
scope of application or versatility (using categorization
by Binder [7]).
According to this categorization, DProfSLA documents
are operation level documents (by intended purpose) to
be used in-house (by scope of application). By
versatility categorization, they belong to standard
agreements. The schema provides subset of elements
defined by already existing GXLA or WSLA, and
documents can be translated into these schemas using
XSLT.

2.2 Overview of application monitoring tools

Study shown in [8] shows that, while service levels and
performance of applications are of critical importance in
practice, application level monitoring tools are rarely
used.
Java application monitoring tools are usually developed
using either JVMTI/JVMPI [9, 10] or aspect-oriented
programming (AOP) [11].
JVMTI and JVMPI APIs require knowledge of C/C++ in
addition to Java, and also yield significant overhead [1].
COMPASS JEEM [12] can be used to monitor JEE
applications, but every application layer needs different
set of probes. Tools developed by Briand et al. [13] can
be used only for UML diagram reconstruction, and it
cannot be used for monitoring of web-services.
There are also commercial application monitoring tools,
such as DynaTrace and JXInsight.
AOP is used for instrumentation of code. Separation of
concerns allows for monitoring code to be separated
from application code. There are several monitoring
tools based on AOP. The Kieker framework [1] is a
framework for continuous monitoring and analysis of all
types of Java applications, that uses aspects to define
and implement monitoring probes.The HotWave
framework [14] tool allows run-time reweaving of
aspects and creation of adaptive monitoring scenarios,
but it is still in development phase.
The DProf system presented in this work is based on
the Kieker framework [1] and the JMX technology [14].
It can be used for adaptive and reconfigurable
continuous monitoring of JEE applications, as
presented in this paper. Use of Kieker grants low
overhead, and separation of monitoring code from
application code by using the AOP. JMX is used for
controlling of monitoring process at run-time.
Together with DProfSLA schema, DProf system can be
used to monitor how SLA is executed and where
problems occur.

3. DPROFSLA XML SCHEMA

Monitoring process goals are defined using a special
XML schema – DProfSLA schema. Schema is specified
in accordance with categorizations and existing
schemas shown in related work.
Root element of this schema is shown in Fig. 2.

Okanović et al. 27

IJIEM

The root element (DProfSLA) has three sub elements:
Parties (parties in the agreement), Trace (call-traces to
be monitored) and Timing (time constraints of this
agreement).
The Parties element represents interested parties in
the agreement. This element is presented in Fig. 3.
The Parties element has two sub elements: Provider
(representing service provider) and Consumer
(representing service consumer). Both of these sub
elements contain contact data regarding service
provider and service consumer, respectively – i.e.
interested parties in this agreement. Each sub element
is represented using the OrganizationType (Fig. 4)
complex type.

Figure 2. Root element of the DProfSLA schema

Figure 3. Parties element in the DProfSLA schema

Figure 4. OrganizationType complex type defined in the

DProfSLA schema

The OrganizationType element contains the following
attributes: name (organization name) and otherInfo
(some other information regarding that organization).
Contact information for that organization is stated in the
ContactData sub element which is presented using the
ContactDataType (Fig. 5) complex type.

Figure 5. ContactType complex type defined in the DProfSLA
 schema

ContactDataType contains (optional) attributes for
address, e-mail address, web address and contact
phone for each interested party in the agreement.
The Trace element (Fig. 6) represents a performance
information for one call trace. It is of the TraceType
complex type.

Figure 6. TraceType complex type defined in the DProfSLA

schema

The Trace element has two mandatory attributes. The
name attribute is used to specify a part of application to
be monitored. String representation of a call tree is
used for this. The metric attribute specifies which
metric is used, i.e. which aspect of application
performance is going to be monitored. Sub elements of
the Trace element can be other Trace elements, e.g.
methods that are invoked from other (parent) method,
described in parent Trace element.
Furthermore, there are four optional attributes for
specification of expected performance values in
designated metric. The nominalValue represents
expected average value, while the upperTolerance
and lowerTolerance are maximal and minimal average
values in designated metric, respectively. The
anomalyPct is used to define allowed number of
extreme values in obtained results.

The Timing element (Fig. 7) is used to specify time
constraints for this agreement. Sub elements StartTime

and EndTime define period to which this document
applies. Both times are in milliseconds (XML schema

28 Okanović et al.

IJIEM

long values), starting from midnight, January 1, 1970
UTC (as in Java specification).The SamplingPeriod
element denotes time (in milliseconds, long values)
between two analyses of obtained results.

Figure 7. Timing element defined in the DProfSLA schema

4. DPROF MONITORING SYSTEM

In order to continuously monitor software applications
we have developed the DProf monitoring system. It is
mainly designed for continuous monitoring of JEE
applications. With minor modifications it can be used for
applications developed for other platforms.
This system is based on Kieker framework for
continuous monitoring and analysis of software
systems. We have developed additional components in
order to allow changing of monitoring parameters while
the application is still running.
The Kieker framework consists of the Kieker.Monitoring
and the Kieker.Analysis components. The
Kieker.Monitoring component collects and stores
monitoring data. The Kieker.Analysis component
performs analysis and visualization of this monitoring
data.
The component diagram of Kieker framework is shown
in Fig. 8.

The Kieker.Monitoring component is executed on the
same computer where the monitored application is

being run. This component collects data during the
execution of the monitored applications. The Monitoring
Probe compoenent is a software sensor that is inserted
into the observed application and takes various
measurements. For example, Kieker includes probes to
monitor control-flow and timing information of method
executions. Probes are most commonly implemented
using AOP aspects, and additional probes can be
added to support different measurements (e.g. for
adding support for new metrics). Monitoring Log Writers
store the collected data, in the form of Monitoring
Records, in a Monitoring Log. The framework is
distributed with Monitoring Log Writers that can store
Monitoring Records in file systems, databases, or JMS
queues. Additionally, users can implement and use their
own writers. The Monitoring Controller component
controls the work of this part of the framework.
The data in the Monitoring Log is analyzed by the
Kieker.Analysis component. A Monitoring Log Reader
reads records from the Monitoring Log and forwards
them to Analysis Plugins. Analysis Plugins may, for
example, analyze and visualize gathered data. Control
of all components in this part of the Kieker framework is
performed by the Analysis Controller component.
The DProf system uses Kieker's infrastructure for data
acquisition, but with some additional components.
Architecture of DProf system and its connection to
Kieker is shown on Fig. 9.
The DProfWriter is the new Monitoring Log Writer. It
sends Monitoring Records to the ResultBuffer
component. The ResultBuffer sends data (periodically
or on demand) to the RecordReceiver component,
which, in turn, stores data into the database. This
combination of ResultBuffer, RecordReceiver and
database plays the role of the Monitoring Log.
Received data is periodically analyzed by the Analyzer
component. The Analyzer can create new monitoring
parameters (based on data analysis) and send these
parameters to the DprofManager component. The
DProfManager compoenent passes these parameters
to the ResultBuffer compoenent (if the command
requires change in data sending period) or to the
AspectController component (if the command requires
change in aspects or join points).

Figure 8. Component diagram of DProf monitoring system

DProfWriter

RecordReciever

Database server

ResultBufferMBean

RecordRecieverService

DBMS

Application

MonitoringProbe aop.xml

MonitoringController

AspectController

DProfManager

AspectControl lerMBean

ResultBuffer

Analyzer

DProfManagerService

Timer Service

Figure 9. Component diagram of DProf monitoring system

Okanović et al. 29

IJIEM

While using the DProfManager and these additional
components we can change monitoring parameters at
run-time. This allows us to reduce monitoring overhead
by shutting off of monitoring in some parts of software,
and obtain more accurate results. Setting of new
parameters can be performed either manually, by a
person in charge or by the Analyzer component. The
Analyzer component, provided with document based on
the DProfSLA XML schema, can check if service levels
read from gathered data, are not in accordance with
SLA and which part of the software causes this.
More detailed information about DProf system and in
depth explanation of its architecture can be found in
[16].
Since the RecordReceiver component is designed as a
web-service, this component can be used for receiving
monitoring records from application developed for
platforms other then Java/Java EE. In order to use this
system with some other platform, such as .NET, all we
need is Kieker and DProfManager implementation in
.NET. This, although it seems complicated, can be
reduced to rewriting these in corresponding
programming language, using existing AOP* and JMX*
implementations for .NET.

5. CASE STUDY

The Case study of our solution will be described on the
JEE application shown in [17]. It is a simple software
configuration management (SCM) application, based on
EJB and JAX-WS.
The DProf was configured to monitor memory usage
during execution of a method that creates organizations
(OrganizationFacade.createOrganization(...)) and
methods invoked from this method
(OrganisationFacade.checkName(...) and City.getId(...)
methods).
Activity diagram for the part of the application which is
going to be monitored is shown on Fig. 10.
Listing 1. shows a part of DProfSLA document.

Figure 10. Activity diagram for the part of the test application

1 <DProfSLA>
2 <Parties><Provider

name="...">...</Provider>
3 <Consumer

name="...">...</Consumer></Parties>
4 <Trace metric="usedMemoryMax"

name="[{gint.scm.ws.OrganisationFacade
.createOrganization,[{gint.scm.ws.Orga
nizationFacade.checkOrgName,[]},
{gint.scm.ws.entity.City.getId,[]}]"
nominalValue="52.0">

5 <Trace metric="usedMemoryMax"
name="[{gint.scm.ws.Organization.che
ckOrgName,[]}]"
nominalValue="52.3"/>

6 <Trace metric="usedMemoryMax"
name="[{gint.scm.ws.entity.City.getI
d,[]}]"
nominalValue="52.5"/></Trace>

7 <Timing>
8 <SamplingPeriod>43200000</SamplingPerio

d>
9 </Timing></DProfSLA>

Listing 1. DProfSLA document for this example

Maximal values for memory usage during executions of
these methods are given in the DProfSLA document.
Measurement of memory usage in monitoring probes
was performed using JMX platform MemoryMXBean.
The analysis of the obtained data will be performed
every 12 hours (43200000ms). First, only
createOrganization() method is monitored and then, if
there is deviation from values in DProfSLA, only
methods invoked from this one are monitored. If there is
a deviation from SLA values in one of these methods,
that particular method needs to be reengineered. If
there's no problem with any of them, parent method –
createOrganization() – needs reengineering.
Classes from kieker.*, java.* and javax.* packages are
not monitored – we only look for problems in this
application classes.
After 12 hours results were analyzed by the Analyzer
component, and they show increased memory
consumption during the execution of the
createOrganization(...) method (consumption
52.25557% of memory was used).
To find the source of the problem, the Analyzer
component changed monitoring parameters and
included monitoring of City.getId(...) and
Organization.checkName(…) methods.
Analysis of the data gathered after another 12 hours,
showed that checkName(...) method exceeds expected
amount of memory (52.55579%).
Results from first and second iteration are shown in
Table 1.
Based on these results, it can be said that
checkName(...) method requires refactoring in order to
be optimized and in accordance to the SLA.

30 Okanović et al.

IJIEM

 Monitored
 Method
Monitored
Levels

Organization.
createOrganization()

City.
getId()

Organization.
checkName()

Level 1 52.25557 N/A N/A
Levels 1 and 2 52.25658 52.25657 52.55579

Table 1. Obtained monitoring data

6. MONITORING OVERHEAD ANALYSIS

Measurment of response times has been performed in
order to determine the DProf on the monitored
application.
A comparison of response times for different test
scenarios is shown in box-and-whisker diagram in Fig.
11.

Turning on monitoring of an application yields
monitoring overhead, as expected. Turning on
monitoring in additional levels, has even more overhead
as a consequence, but more detailed information can
be obtained.
Monitoring results for DProf can be compared with other
Kieker writers, as shown in Fig. 12.

Figure 11. Comparison of response times of Organisation.createOrganisation(…) method in different scenarios

Figure 12. Comparison of response times of Organisation.createOrganisation(…) method for DProf and different Kieker writers

We can see that DProf has lower overhead than that of
AsyncFSWriter and AsyncDBWriter, which store data
into file system and relational database, respectively.
It was already shown in [1] that Kieker framework has
very low overhead. DProf reduces this overhead even
further, which makes it very useful for continuous
monitoring of software.

This reduction of overhead comes from the fact that
obtained data is not immediately stored into database.
The data is stored in bulks, through ResultBuffer,
periodically, so only occasional response time spikes
can be experienced. Other writers (and tools) store data
immediately, so during every application call response
time are increased.

Okanović et al. 31

IJIEM

7. CONCLUSION

In this paper we presented a XML schema for creating
SLA documents and extensible system for continuous
monitoring of applications and automatic evaluation of
software against expected values, defined in SLA –
DProf. Using this system we can search for problems in
honoring an agreement between service provider and
consumer. The system can gather data on application
execution, compare these results with the expected
results and find which part of application causes
deviations and problems. Expected values are defined
in a document based on DProfSLA XML schema. The
schema is designed with existing SLA schema
standards (such as GXLA and WSLA) and with
categorizations of these schemas in mind. Its main use
is for standard intra-organizational agreements, but it
can be used for inter-organizational agreements, too.
The system supports various metrics and additional
metrics can be added as needed.
As a proof-of-concept, the DProf system was used for
monitoring of memory usage of one SCM application
based on EJB and web services technologies.
The analysis of performance overhead shows that
DProf has lower overhead than existing writers from
Kieker framework and other monitoring tools.
Future work on this system will focus on implementation
of the DProf Analyzer component as Kieker.Trace
Analysis module and improvement of integration of the
DProf component into the Kieker distribution. We will
also work on extending of the system with additional
monitoring probes for different and more complex
measurements.

ACKNOWLEDGEMENT
The research presented in this paper was supported by
the Ministry of Science and Technological Development
of the Republic of Serbia, grant III-44010, Title:
Intelligent Systems for Software Product Development
and Business Support based on Models.

7. REFERENCES

[1] v. Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J.,
Frey, S., Kieselhorst, D. (2009), Continous Monitoring of
Software Services: Design and Application of Kieker Framework,
Technical Report TR-0921, Department of Computer Science,

University of Kiel, Germany, available at:
http://www.informatik.unikiel.de/uploads/tx_publication/vanhoorn
_tr0921.pdf (accessed: 11 June 2011)

[2] Benyon, R. (2006), Service Agreements: A Management Guide,
Van Haren Publishing, Netherlands

[3] Sturm, R., Morris, W. (2000), Foundations of Service Level
Management, Sams, Indianapolis, USA.

[4] Tebbani, B., Aib, I. (2006), GXLA a Language for the
Specification of Service Level Agreements, Springer Lecture
Notes in Computer Science, Vol. 4195/2006, pp. 201-214.

[5] Keller, A., Ludwig, H. (2003), "The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services",
Journal of Network and Systems Management, Vol. 11, No. 1,
pp. 57-81.

[6] Paschke, A., Schnappinger-Gerull, E. (2006), "A Categorization
Scheme for SLA Metrics" in Multi-Conference Information
Systems (MKWI 2006), Passau, Germany

[7] Binder, U. (2001), "Ehevertrag für IT Dienstleistungen" Infoweek
34(4)

[8] Snatzke, R. G. (2009), "Performance survey 2008"
http://www.codecentric.de/export/sites/homepage/__resources/p
df/studien/performance-studie.pdf (accessed: 11 June 2011)

[9] Java Virtual Machine Tool Interface,
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti
(accessed: 11 June 2011)

[10] Java Virtual Machine Profiler Interface,
http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.
html,(accessed: 11 June 2011)

[11] Laddad, R., Johnson, R. (2009), Aspectj in Action: Enterprise
AOP with Spring Applications, Manning Publications, USA

[12] Parsons, T., Mos, A., Murphy, J. (2006), "Non-intrusive end-to-
end Runtime Path tracing for J2EE Systems", IEEE Proceedings
- Software, Vol. 153, No. 4, pp. 149–161.

[13] Briand, L. C., Labiche, Y., Leduc, J. (2006), "Toward the reverse
engineering of UML sequence diagrams for distributed Java
software", IEEE Transactions on Software Engineering, Vol. 32,
No. 9, pp. 642–663.

[14] Villazon, A., Binder, W., Ansaloni, D., Moret, P. (2009),
"HotWave: Creating adaptive tools with dynamic aspect-oriented
programming in Java", in Proceedings of the 8th International
Conference on Generative Programming and Component
Engineering (GPCE ’09), ACM, pp. 95–98.

[15] Sullins, B. G., Whipple, M. B (2002), JMX in Action, Manning
Publications, USA

[16] Okanović, D., van Hoorn, A., Konjović, Z., Vidaković, M. (2011),
"Towards Adaptive Monitoring of Java EE Applications",
International Conference on Information Technology – ICIT,
Amman, Jordan

[17] Okanović, D., Vidaković, M. (2008), "One implementation of the
system for application version tracking and automatic updating",
in Proceedings of the IASTED International Conference on
Software Engineering 2008 (SE 2008). ACTA Press, pp. 62–67.

* e.g. Spring.Net (http://www.springframework.net/), LOOM.NET
 (http://www.dcl.hpi.uni-potsdam.de/research/loom/)
* e.g. NetMX (http://www.codeproject.com/KB/library/NetMX.aspx)

Kontinualno praćenje ugovora o nivou usluga sa manjim
opterećenjem

Dušan Okanović, Milan Vidaković, Zora Konjović

Primljen (22 decembar 2011.); Recenziran (24 januar 2012.); Prihvaćen (06 februar 2012.)

Rezime: Stalno praćenje i verifikacija softvera su potrebni da bi se osiguralo da softver ispunjava
očekivane nivoe usluge. U ovom radu dat je predlog nove XML sheme za definisanje nivoa usluga. U
dokumentima na osnovu ove sheme definišu se delovi aplikacije koji se prate, koje mere treba da se
koriste i koje su očekivane vrednosti za te mere. Prikazan je i DProf alat za stalno adaptivno praćenje
softverskih performansi, koji se zasniva na Kieker okruženju. Opterećenje koje DProf dodaje na
softver koji se prati je manje nego kod drugih alata ili ekstenzija Kieker okruženja. Sistem je
implementiran u Javi, ali uz manje modifikacije može da se koristi za NET aplikacije.

Ključne reči: praćenje softvera, kontinualno praćenje, ugovor o nivou usluga

