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Abstract

The multiple link robot is a nonlinear system, in general whose characteristic polynomial is not unique,
and whose control schemes depend on particular operating conditions. Among all kinds of controllers
used for robot control, nearly 90% is PID controller in the industrial world, not only due to its simplicity
and effectiveness, but also to its ability of coping with uncertainties and nonlinearities in the system.
Since most of PID controllers are designed based on trial and error method for a black-box plant, for
the precision motion control of a robot, it is more desirable to design the PID controller based on the
mathematical model of the robot. This paper is dedicated to a PID controller design for a nonlinear
motion control based on the mathematical modelling of the dynamics of Adept 550 Robot. The general
relationships of the PID controller design on the robotic dynamics and the planned trajectory are
derived. The analysis and simulations of its closed loop dynamics indicates its effectiveness in fast
and accurate trajectory tracking. The results can be practically generalized to other cases of PID
controller design for other robots in the industrial applications.
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1. INTRODUCTION

The multiple link robot is a nonlinear system, in general
whose characteristic polynomial is not unique, and
whose control schemes depend on particular operating
conditions. Among all kinds of controllers used for
robot control, nearly 90% is PID controller in the
industrial world, not only due to its simplicity and
effectiveness, but also to its universality and feasibility.
PID controller can be designed according to many PID
tuning methods, even if the mathematical model of the
system is not available, or uncertainties and
nonlinearities were found in the system.

PID controller has fairly easily understood physical
meanings: the proportional control provides a restoring
force that is proportional to the instantaneous error
between the set point and the process variable at the
moment, but it may end up with steady-state error due
to friction, gravity or so; the integral control contributes
a corrective force that is proportional to the sum of all
past errors multiplied by their own time interval, so that
the steady-state error can be eliminated, but it may
cause overshoot of the system response; derivative
control is introduced to address the overshoot issue by
producing a counteractive force that is proportional to
the rate of change of error.

With these understandings, often engineers who do not
have a systematically training of control theory can
design a PID controller for the industrial process whose

transfer functions are unknown to them. That is why
most of PID controllers are designed based on trial and
error method for a black-box plant.

However, for the precision motion control of a robot, the
trial and error approach is not an efficient way. In recent
years, more and more researchers aim to design
different types of PID controllers based on theoretical
analysis to deal with nonlinearity or non-explicates for
different applications, such as indoor blimp robot, gyro
mirror line-of-sight system, two wheeled autonomous
balancing robot, parallel manipulator, etc. [1, 2, 3, 4, 5,
6, 7, 8]. It is demonstrated that the theoretically
designed PID controllers can be optimally tuned to fit
the needs of a specific systems or a generic task, for
better performance than that the trial-and-error learning
designed PID controller has.

This paper is dedicated to explore a theoretically
designed PID controller for a nonlinear motion control
on the basis of the mathematical model of Adept 550
robot. As one of the most commonly used robots in the
industrial production lines, the Adept 550 robot is a four-
axis SCARA robot with three rotational joints and one
translational joint (Fig. 1-a). Its shoulder is embodied
with the rotational joint 1, its elbow with the rotational
joint 2, and its wrist with the rotational joint 4. Its
vertical motion is accomplished with the translational
joint 3. Since it features a small motion envelope while
its speeds and payloads are relatively high, Adept 550
robot can be found in mechanical assembly, material
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handling, packaging, machine tending, screwdriving,
and many other operations requiring fast and precise
automation.
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Figure 1. Adept 550 Robot with joint locations [1]

Needless to say, a complete study of PID controller
design based on the mathematical model of Adept 550
is meaningful for its industrial applications. The
geometric dimensions of Adept 550 are shown in Fig. 2
for modelling and simulations.

4 x 14 dia. thru

All dimensions in mm. 140 300 280
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2. THE DYNAMICS OF ADEPT 550 ROBOT

2.1 The Link Positions and Inverse Kinematic
Relationships

According to the Denavit — Hartenberg (D-H)
coordinates, the Z -axis is in the direction of the joint
axis, Adept 550 has the special case of parallel Z axes,
connected with the rigid inner and outer links. The
trajectory of the robot is determined by the motion of
these two links, and at the wrist the rotational joint
rotates about the Z axis to adjust the gripper angle, but
not to change the trajectory. In order to focus on the
trajectory study, without loss its generality, we assume
the wrist's rotary angle is zero. Therefore, the
coordinate systems to describe trajectory and link
positions can be simply presented as follows (Fig. 3):

Figure 3. Top view of Adept 550 with joints rotated by angles

ﬂl’ 01’ﬂ2'92

Table 1. lists the D-H parameters of the inner and outer
links.

Table 1. D-H Parameters

Link Li aj di 0;
Inner L, 0 0 0,
Outer L, 0 0 0,
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"Thess dimensions may vary shghtly
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Figure 2. Adept 550 dimensions [1]

For the inner link (i=1) and outer link (i=2), the
coordinate transformation with rotation and translation
components is described with the matrix:

Ai = Rz,é’iTz,diTx,Li Rx,ai =

cos¢, —sing, cosa; sing, sina; L, cosé,

sing, cosé cosa; —cosé sing; L, sing, 1)
0 sin g, cosq, d,

0 0 0 1
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The simplified transformation matrix of Adept 550 from
the base to the gripper is as follows:

To2 = A1A2 =

cos(6, +6,) -—sin(@, +6,) 0 L, cosé, +L,cos +86,)

sin(@, +6,) cos(d, +6,) 0 L;sing, +L,sin@, +6,) | (2)
0 0 1 0
0 0 0 1
Noticing the relationships the angular position

S, (1=12) of the motors and the angle &, (i=12)

about previous Z from old X to new X:
B =6, pB,=6,+0,, the gripper's horizontal
position (P,, P,) can be expressed as:
P, =L, cosp +L,cosp, -
P, =L;sin B +L,sin g,
From Equation (3), the motor angular positions
(B,, B,) can be derived:
P, +,/P2+P?-R
B, =2tan| S A
P.+R;
— 4)
P+, P +P° —-R
pB,=2tant| LV Y *
P, +R,
where
R _ P} +P/+L-L;
=
2L,

PZ P2 LZ 2 (5)

R —=_* + y +L - Ll
? 2L,

2.2 Forward and Backward Velocity and
Acceleration Relationships

The forward velocity V can be found from Equation (3):

SAEA

where J, is Jacobian matrix

21

Ja:{—Llsin/?l -

—-L,sing,
L, cos g,

L, cos 3,

And the backward velocity (ﬂl ﬂz) can be derived as
follows:

ﬂ_llz.]l(?x} or
b Py

:81] _ 1 { Lz COSﬂZ
B,) LL,sin(B,—B) |- L cosp,

Lo sin }(PJ ®)
—-L;sing, | P,

Also, the relationships of the forward acceleration
(PX, Py) can be determined:

(F.).*Jz\]a[@]u{ﬁi] 9
Py ﬂz ﬂz

where
—L, cos - L, cos
L= 1 . /81 2 ./82 (10)
—L,;sin g, —L,sin g,
The relationships of the backward acceleration

(ﬂl, ,32) are as follows:

(el
f, P, V5

B 1

LL,sin(B, - 4,)

{ L,cos B, L,sing, } Fix . L,L, cos(B, - ) I—z2 [:Blzj
—-Lcosp —Lsing |\P, ) |-L?  -LL,cos(B,-A) | B2

2.3 Modelling and Simulation of the Dynamics
of Adept 550 Robot

(11)

*

For the simplified structure of the robot as shown in Fig.
4, the inner link and outer link are represented as rigid

bars with the central mass m, (i =1,2) at their centers,
and the gripper and load are symbolized as a mass
m,. Out of several commonly used methods for

modeling the robot dynamics, Lagrange method is
employed to develop the dynamic model of Adept 550

robot. The Lagrange function L is the difference of the
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total kinematic energy T and the total potential energy
vV, ie.,

L=T-V (12)

€3 (e ea)

Figure 4. Simplified structure of Adept 550 robot

For the robotic structure shown in Fig. 4, the total
kinematic energy T is expressed as:

T :Tprismatic +Trotation (13)
where
Tprismatic = %mlvczl + %mzvczz + %m3vcz3 =
1 155 1 2 p2 h o/ 155
:Em{z LA J+Em2£L1ﬂ1 +LL, 8.8, cos(B, - B;) +Z L5, j
b oML + 2L L cos(B, - ) + L) as
1(1 . 1(1 .
Trotation = E(g m, Li jﬂlz + E(g m, L; jﬂlz (15)
And the total potential energy V is given by:
V =Vgravity +Vspring (16)
where
1 .
Vgravity = Emlng + ngLl + msng Smﬂl +
1 .
+ EmZgL2 +m,gL, (sin g, (17)

1 1
Vspring = Eksl(reml _ﬂl)2 +§k32 (remz - 132 )2 (18)

Zhang

Thus the dynamics of Adept 550 robot described by
Lagrange method is as follows:

d (aT j aT oV

—| == |-—+ =17,

dt\op, ) op, op, 19)
d (8T j aT &V

—| = |- + =7,

dt\op, ) 0B, op,

Substituting Equations (13) — (18) into Equation (19)
results in:

= (20)

7 . 1 .
(12 m, +m, + mSJLfﬂl +(2 m, + m3jL1L2 COS(,BZ _ﬁ1)ﬁz -

1 . ; 1
[E m, + m3)L1L2 Sm(ﬂz - ﬂ1)ﬂ22 + (5 m +m, + msjgl‘l cosﬁl - ksl(r‘gml - 131)

T = (20)

7 .. 1 ..
(12 m, + msjl-gﬂz + (2 m, + mstlLZ COS(ﬂZ - /Bl)ﬂl +
E% m, + mstle sin(B, - B) B2 +(% m, + manL2 cos f, —k,(r6,, = ,)
Denoting ff = ( b )T , and considering damping

torques 7g,nin, Of the inner and outer links, Equation
(20) can be rewritten as:

D(ﬂ)B—i_H(ﬂ1B)B+G(/B):T+rdamping (21)
where

[lml+m2 +m3ij (%mz +m3JL1L2 cos(B, - B.)

12
D) 7
1 - 7 2
(Zmz +m3)L1L2 cos(p, — ) [12 m, +m3]L2
0 7(%m2 +m3jL1L2 Sin(ﬂz *ﬁl)ﬂz
H(ﬁrﬂ):
[Emz +m3jL1LZ sin(ﬂz *ﬂ1)ﬁl 0
1
—m; +m, +m, (gL, oS B, — ksl(reml _ﬁl)
G(p) =

1
(2 m, + msjgl-z COSﬂZ - ksz (I’Hmz - /Bz)
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where matrix C
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Figure 5. Dynamic responses: angular displacements
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Figure 6. Dynamic responses: angular velocities
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It can be observed that the dynamic model of Adept 550
robot is a highly nonlinear system. The simulation of the
robot dynamics will be performed with Adams-Bashforth
recursive scheme, which has been applied to general
open-chain type manipulators and proven to be much
more efficient in computational load than the
nonrecursive methods. This is especially the case when
the system is highly nonlinear.

Fig. 5 and 6 display the dynamic responses of angular
displacements and velocities with the initial conditions
at a given gripper position. The simulation illustrates the
dynamics modeling of Adept 550 developed by
Lagrange method, and demonstrates the stability of the
robot motion. It has been observed that the heavier the

load M, is, the longer it takes the system to be settled,

and when the load is heavier than a certain weight, the
gripper system becomes unstable.

2.4 Sensitivities to Static Torques in Open
Loop Control

In the open loop control of Adept 550 robot, the
sensitivities of angular displacements to static torques
indicate how well the gripper can hold its position.
These sensitivities of angular displacements to static

torques are as follows:

op, _ 1
o, (;ml +m, +m3ngls.in,6’1
(23)
op, 1
or,

(; m, + m3ng2 sin 3,

Variations of static torques 7 in the open loop will
produce errors in angular displacements f. A closed

loop position control is desirable to address this issue
(Fig.7).

position
trajectory | inverse error motor robot error
planner kinematcs controller > dynamics > dynarnics >
Figure 7. Robot control diagram
3. ROBOT CONTROL AND ITS SIMULATIONS n o o _
. . d. , h. B =7, —C. B,
3.1 Robot Dynamics with PID Controller Jz; DAy +i; w BB, + 8 (B) =7~ Cuby
It is assumed that the motors driving the inner and outer .. Kok ) Kok (24)
links are the same type of motors. Considering the — Jmk&mc +| By + Ky R Ok = R Vi =Tk
k k

motor parameters, links is

described as:

dynamics of the two
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Since B, =10, ,,7

ratio, the two dynamic equations of robot link and its
driving motor expressed in Equation (24) can be
combined into a single one:

« =r7t., where r is the gear

3ot kO + B kb =KV, =C,6,, —rd,, k=12 (25)

The PID control law for the controller and motor drive at
the inner or outer link is as follows:

Vk = KP,k (ekd _emk)+ KD,k (ekd _émk)+

K, [0 -0, )dt, k=12 (26)

The block diagram based on the transfer functions of
Equations (25) and (26) for the robot control is shown in
Fig. 8.

rdd,

& 1’ 8

Figure 8. PID controlled robotic motions

The transfer function of the closed loop system is:
Ko S+ Kp,s?+K,
Jei 1S +(Beff,k + KD,k)52 +Kp s+ Ky
B rs q
Jor kS° +(Beﬁ'k + KD,k)52 +Kp5+K, ¢

Root Locus
10 .

0

m,k

o

(27)

Imaginary Axis

10 I | | | | | |
-70 -60 -50 -40 -30 -20 -10 0 10

Real Axis

a)

K &
Ko+ Kpes+ = —l®-—o L - >
2 slf%ﬂ"ks & B%S”-k / .
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where the nonlinear terms are treated as disturbances
to the system:

d; = [% m, + maJL1L2 cos(B, — BB, - ( m, +m JLle sin(B, - B) B}

(28)
+(%m1 +m, + ma)ng cos S,
d, = [%mz + m3)L1L2 cos(B, - B.) B, — ( m, +m leL2 sin(3, - B) 32
+(%m2 + mgng2 €0s f3,
Placing the three poles - Py
— G @ T Ja)n v1— gkz of the characteristic

polynomial onto the stable half-plane, and designing

e (08 w/l—gkz as the dominant poles, and

— P, to manipulate the root locus yield the following
relationships on the PID control parameters:

Kpx = (a)nzk +26,0,, Py )‘Jeff,k

Kk = a)rik PicJ et (29)
Kok = (nga)n,k + Py )‘]eff,k — Besr
k=12

Its root locus analysis for the inner link and outer link of
the tuned PID controllers is demonstrated in Fig. 9.

Root Locus
20 T T

Imaginary Axis

-20
-120 -100 -80 -60 40 -20
Real Axis

b)

Figure 9. Root locus analysis for inner link (a) and outer link (b)
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Noticing B, =r0,,, fi =16, the dynamics of the
inner or outer link can be described as
‘]eff,kﬂk +(Beﬁ,k + KD,k +Ckr)ﬂk + KP,kﬂk + Kl,kﬁk =

= KD,kBkd + KP,kIBkd + Kl,kﬂkd - rzdk (30)
k=12

Equation (30) can be rewritten in matrix form:

DPID(ﬂ)-ﬂnk + HPID(IB)IBk +GPID(ﬂ)IBk +

+ KPID (ﬁ)ﬁk + CPID (ﬁ) = (ole) (31)

where

1
Jeff,l r2(2m2 +m3j|—1|—2 Cos(ﬁz _ﬂl)
DPID (ﬂ):
r{zm2 + maleL2 cos(B, —B1) e

Bers +Kpy +Cyir ’(% m, + ma)l—ll—z sin(, ’ﬁl)(3ﬂ.z *ﬂl)rz |
Hep (B)= 1
*[Emz +mstil-z sin(, *15'1)(:82 *35’1)"2 Bei o +Kp, +Cor

Ko 3moemsm Jobsinare —(Zm,em, L costs, - A4, -
Gooth)=| | .
(3meem, b 00, - AR B, A" K[ 3, e, i i e

K, O
KP|D(IB):|:O’ K :|

(32)
- KP,lﬂld
- KP,zﬂzd

-K D,1B1d

_K|1 '1d
CPID(/B)={_K /?d o J

_Kl,zﬁ.zd

3.2 Trajectory Planning

The PID controller can be designed to perform a
trajectory tracking from the initial position (XO, yo) to

the final position (Xf v Y ) at time t, . Without loss of

generality, the motion in Xaxis is assumed with
following  constraints: X, > X;, and constant

acceleration —a, in time interval [O, tb], constant
speed —V, in time interval [tb, t; —th, and constant
acceleration a, in time interval [tf -1, t; J where for
a given constant speed V,,

Xy — X5 +thf

" (33)

25

The trajectory component P, can be expressed as

follows:
1 .
xo+5axt , 0<t<t,
X + X, —V,t; (34)
P = f”*t‘ t, <t<t, —t,
1 1
X; —Eaxtf +axtft—§axt2, t, —t, <t<t,

Fig. 10 displays the simulated trajectory described in
Equations (33) and (34) for a given set of parameters.
And the trajectory component Py can also be
expressed in the similar way. Then the desired angular
displacement ﬂd , velocity ,Bd and acceleration Bd

can be determined:

2 2
A PyiJPX +Py -R,
(ﬂld] P.+R;
d | 2 2
b 1ot P, £,P? +P) - R,

P.+R,
,Bld _ =) pX
[ﬂ;]‘Ja‘[" e, >
(é{:}:%(ﬂ)‘l ") B
ﬂz Py (ﬂZd)

3.3 Simulations of the Closed Loop Controlled
Robot Dynamics

Denotinng[B1 ,Bz Bl IBz ,81 ﬂz]T

Equation (31) can be rewritten as

U P 0
X = 0, 022 |22 X
- DF:IID KPID B DFjllDGPID - DF:I1D H PID
02
+ 024 (36)
- DF_’IlDCPID

Per Equations (35), the trajectory related matrices and
vector given by Equation (32) can be determined. Then
the closed loop controlled dynamics of Adept 550 robot
expressed in Equation (30) or (31) during the planned
trajectory can numerically simulated.
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desired displacement in x (m)

desired velocity in x (m/s)

N

desired acceleration in x (m/sz)

time t(sec)
Figure 10. Desired trajectory planning in x axis

In order to verify the effectiveness of the PID controller
based on dynamics of Adept 550 robot, the following
case is given for simulations: assume the PID controller
is with a critical damp for both inner link and outer link,
the gripper moves from the initial position

(P, =508 mm, P, =254 mm) to the final position
(P, =127 mm, P, = 254 mm) t; =1sec.

Fig. 11 shows the simulation results of Equation (36)
recursively integrated by Adams — Bashforth method.
0.8
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0.7 B
- desired Px -.-.- actual Pxa

0.6 q
0.5 4
0.4} 4

0.3- B

Displacement in x (m)

0.2+ i

0.1t E

0 I I I I I I I I I
0 0.1 02 03 04 05 0.6 0.7 08 0.9 1

time t(sec)

o
®
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I

o
o
I

--- desired Py -.-.- actual Pya

o
0
I

o
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I

o
w
I
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)
I
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-
|

I I | I I | I | I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time t(sec)

o

o

Figure 11. Simulation of PID controlled trajectory tracking
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It can be observed that the trajectory tracking process
is fast and stable. Its evaluation is given in the
appendix.

5. CONCLUSION

The PID controller design for a nonlinear motion control
based on the mathematical modelling of the dynamics
of Adept 550 Robot is explored.

The general relationships of the PID controller design
on the robotic dynamics and the planned trajectory are
derived. The analysis and simulations of its closed loop
dynamics indicates its effectiveness in fast and
accurate trajectory tracking.

The procedure and analysis of this research can be
practically generalized to other cases of PID controller
design for other robots in the industrial applications. It
is meaningful for optimizing the commonly used PID
controller without trial-and-error testing, and it is
especially important for precision operations.
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Appendix: Values of system parameters and
evaluations

The values of the system parameters of the robot inner
and outer links are listed as bellows for numerical
simulation:

The transfer function for the inner link:

(s? +29.865 + 242.10)
(s +30)(s? + 40s + 476)

InnerLink —

The transfer function for the outer link:

o ~ (s +42.06)(s + 10-04)
OuterLink (S 4 30)(32 +40s + 476)

The PID controller for the inner link:

Kp, =9.003 Nm, K, =72.997 Nm/s, Ky, =0.302

Nms
The PID controller for the outer link:

Kp, =3937 Nm, K, =31.917 Nm/s, K,
0.076 Nms

27
The position error is defined as
Py Pya

It should satisfy the following requirement at the final
position;

e=P

trajectory

P

actual

e(t;)<2.5mm

The actual error at the final

e(t;)=1.94mm.
The cost function

1,
sz;e (k) x e(k)

It should satisfy the following requirement over the
entire trajectory:

J<25 mm?
The actual cost function is J =2.38 mm?.

position s

IJIEM



