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Abstract  

The multiple link robot is a nonlinear system, in general whose characteristic polynomial is not unique, 
and whose control schemes depend on particular operating conditions.  Among all kinds of controllers 
used for robot control, nearly 90% is PID controller in the industrial world, not only due to its simplicity 
and effectiveness, but also to its ability of coping with uncertainties and nonlinearities in the system.  
Since most of PID controllers are designed based on trial and error method for a black-box plant, for 
the precision motion control of a robot, it is more desirable to design the PID controller based on the 
mathematical model of the robot. This paper is dedicated to a PID controller design for a nonlinear 
motion control based on the mathematical modelling of the dynamics of Adept 550 Robot. The general 
relationships of the PID controller design on the robotic dynamics and the planned trajectory are 
derived. The analysis and simulations of its closed loop dynamics indicates its effectiveness in fast 
and accurate trajectory tracking. The results can be practically generalized to other cases of PID 
controller design for other robots in the industrial applications.  
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1. INTRODUCTION 
The multiple link robot is a nonlinear system, in general 
whose characteristic polynomial is not unique, and 
whose control schemes depend on particular operating 
conditions.  Among all kinds of controllers used for 
robot control, nearly 90% is PID controller in the 
industrial world, not only due to its simplicity and 
effectiveness, but also to its universality and feasibility.  
PID controller can be designed according to many PID 
tuning methods, even if the mathematical model of the 
system is not available, or uncertainties and 
nonlinearities were found in the system.   

PID controller has fairly easily understood physical 
meanings: the proportional control provides a restoring 
force that is proportional to the instantaneous error 
between the set point and the process variable at the 
moment, but it may end up with steady-state error due 
to friction, gravity or so; the integral control contributes 
a corrective force that is proportional to the sum of all 
past errors multiplied by their own time interval, so that 
the steady-state error can be eliminated, but it may 
cause overshoot of the system response; derivative 
control is introduced to address the overshoot issue by 
producing a counteractive force that is proportional to 
the rate of change of error.   

With these understandings, often engineers who do not 
have a systematically training of control theory can 
design a PID controller for the industrial process whose 

transfer functions are unknown to them. That is why 
most of PID controllers are designed based on trial and 
error method for a black-box plant. 

However, for the precision motion control of a robot, the 
trial and error approach is not an efficient way. In recent 
years, more and more researchers aim to design 
different types of PID controllers based on theoretical 
analysis to deal with nonlinearity or non-explicates for 
different applications, such as indoor blimp robot, gyro 
mirror line-of-sight system, two wheeled autonomous 
balancing robot, parallel manipulator, etc. [1, 2, 3, 4, 5, 
6, 7, 8]. It is demonstrated that the theoretically 
designed PID controllers can be optimally tuned to fit 
the needs of a specific systems or a generic task, for 
better performance than that the trial-and-error learning 
designed PID controller has.   

This paper is dedicated to explore a theoretically 
designed PID controller for a nonlinear motion control 
on the basis of the mathematical model of Adept 550 
robot.  As one of the most commonly used robots in the 
industrial production lines, the Adept 550 robot is a four-
axis SCARA robot with three rotational joints and one 
translational joint (Fig. 1-a). Its shoulder is embodied 
with the rotational joint 1, its elbow with the rotational 
joint 2, and its wrist with the rotational joint 4.  Its 
vertical motion is accomplished with the translational 
joint 3. Since it features a small motion envelope while 
its speeds and payloads are relatively high, Adept 550 
robot can be found in mechanical assembly, material 
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handling, packaging, machine tending, screwdriving, 
and many other operations requiring fast and precise 
automation.  

 
Figure 1. Adept 550 Robot with joint locations [1] 

 
Needless to say, a complete study of PID controller 
design based on the mathematical model of Adept 550 
is meaningful for its industrial applications. The 
geometric dimensions of Adept 550 are shown in Fig. 2 
for modelling and simulations.  
 

 
Figure 2. Adept 550 dimensions [1] 

 

 

2. THE DYNAMICS OF ADEPT 550 ROBOT 
2.1 The Link Positions and Inverse Kinematic  
        Relationships  
According to the Denavit – Hartenberg (D-H) 
coordinates, the z -axis is in the direction of the joint 
axis, Adept 550 has the special case of parallel z  axes, 
connected with the rigid inner and outer links. The 
trajectory of the robot is determined by the motion of 
these two links, and at the wrist the rotational joint 
rotates about the z  axis to adjust the gripper angle, but 
not to change the trajectory.  In order to focus on the 
trajectory study, without loss its generality, we assume 
the wrist’s rotary angle is zero. Therefore, the 
coordinate systems to describe trajectory and link 
positions can be simply presented as follows (Fig. 3):   

 
Figure 3. Top view of Adept 550 with joints rotated by angles 

2211 ,,, θβθβ  
 
Table 1. lists the D-H parameters of the inner and outer 
links.   
 
Table 1. D-H Parameters 

Link Li αi di θi 

Inner L1 0 0 θ1 

Outer L2 0 0 θ2 

 
For the inner link (i=1) and outer link (i=2), the 
coordinate transformation with rotation and translation 
components is described with the matrix:   
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The simplified transformation matrix of Adept 550 from 
the base to the gripper is as follows: 
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Noticing the relationships the angular position 

)2,1( =iiβ  of the motors and the angle )2,1( =iiθ  
about previous z  from old x  to new x : 

21211 , θθβθβ +== , the gripper’s horizontal 

position ),( yx PP can be expressed as: 
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From Equation (3), the motor angular positions 
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2.2 Forward and Backward Velocity and  
        Acceleration Relationships 
 
The forward velocity v  can be found from Equation (3): 
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where aJ is Jacobian matrix  
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And the backward velocity ( )21, ββ &&  can be derived as 
follows: 
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Also, the relationships of the forward acceleration 
( )yx PP &&&& ,  can be determined: 
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where  
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The relationships of the backward acceleration 
( )21, ββ &&&&  are as follows: 
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2.3 Modelling and Simulation of the Dynamics  
      of Adept 550 Robot 
 
For the simplified structure of the robot as shown in Fig. 
4, the inner link and outer link are represented as rigid 
bars with the central mass )2,1( =imi  at their centers, 
and the gripper and load are symbolized as a mass 

3m . Out of several commonly used methods for 
modeling the robot dynamics, Lagrange method is 
employed to develop the dynamic model of Adept 550 
robot. The Lagrange function L  is the difference of the 
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total kinematic energy T  and the total potential energy 
V , i.e.,  
 

VTL −=                                                                 (12) 
 

 
Figure 4. Simplified structure of Adept 550 robot 

 
For the robotic structure shown in Fig. 4, the total 
kinematic energy T is expressed as: 
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And the total potential energy V is given by: 
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Thus the dynamics of Adept 550 robot described by 
Lagrange method is as follows: 
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Substituting Equations (13) – (18) into Equation (19) 
results in: 
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Denoting ( )T21 βββ = , and considering damping 

torques dampingτ  of the inner and outer links, Equation 
(20) can be rewritten as: 
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where matrix C  is composed of the damping 
coefficients.   
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Figure 5. Dynamic responses: angular displacements 
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Figure 6. Dynamic responses: angular velocities 

 
It can be observed that the dynamic model of Adept 550 
robot is a highly nonlinear system. The simulation of the 
robot dynamics will be performed with Adams-Bashforth 
recursive scheme, which has been applied to general 
open-chain type manipulators and proven to be much 
more efficient in computational load than the 
nonrecursive methods. This is especially the case when 
the system is highly nonlinear.   

Fig. 5 and 6 display the dynamic responses of angular 
displacements and velocities with the initial conditions 
at a given gripper position. The simulation illustrates the 
dynamics modeling of Adept 550 developed by 
Lagrange method, and demonstrates the stability of the 
robot motion.  It has been observed that the heavier the 
load 3m  is, the longer it takes the system to be settled; 
and when the load is heavier than a certain weight, the 
gripper system becomes unstable.  
2.4 Sensitivities to Static Torques in Open  
        Loop Control 
In the open loop control of Adept 550 robot, the 
sensitivities of angular displacements to static torques 
indicate how well the gripper can hold its position.  
These sensitivities of angular displacements to static 
torques are as follows:  
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Variations of static torques τ  in the open loop will 
produce errors in angular displacements β .  A closed 
loop position control is desirable to address this issue 
(Fig.7). 
 

 
Figure 7. Robot control diagram

3. ROBOT CONTROL AND ITS SIMULATIONS 
3.1 Robot Dynamics with PID Controller 
It is assumed that the motors driving the inner and outer 
links are the same type of motors.  Considering the 
motor parameters, dynamics of the two links is 
described as: 
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Since kkmkmk rr ττθβ == ,, , , where r  is the gear 
ratio, the two dynamic equations of robot link and its 
driving motor expressed in Equation (24) can be 
combined into a single one: 
 

2,1,,, =−−=+ krdCKVBJ kmkkkmkkeffmkkeff θθθ &&&   (25) 
The PID control law for the controller and motor drive at 
the inner or outer link is as follows: 
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The block diagram based on the transfer functions of 
Equations (25) and (26) for the robot control is shown in 
Fig. 8.   

 
Figure 8. PID controlled robotic motions 

 
The transfer function of the closed loop system is: 
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where the nonlinear terms are treated as disturbances 
to the system:  
 

2232

2
112213211221322

11321

2
212213221221321

cos
2
1

)sin(
2
1)cos(

2
1

cos
2
1

)sin(
2
1)cos(

2
1

β

ββββββ

β

ββββββ

gLmm

LLmmLLmmd

gLmmm

LLmmLLmmd

⎟
⎠
⎞

⎜
⎝
⎛ ++

−⎟
⎠
⎞

⎜
⎝
⎛ +−−⎟

⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +++

−⎟
⎠
⎞

⎜
⎝
⎛ +−−⎟

⎠
⎞

⎜
⎝
⎛ +=

&&&

&&&
    (28) 

 
Placing the three poles kp− , 
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( )

( ) keffkeffkknkkD

keffkknkI

keffkknkknkP

BJpK

JpK

JpK

,,,,

,
2
,,

,,
2
,,

2

2

−+=

=

+=

ως

ω

ωςω

                       (29)  

2,1=k       

Its root locus analysis for the inner link and outer link of 
the tuned PID controllers is demonstrated in Fig. 9. 
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Figure 9. Root locus analysis for inner link (a) and outer link (b)
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Noticing d
k

d
kkmk rr θβθβ == ,, , the dynamics of the 

inner or outer link can be described as 
( ) =+++++ kkIkkPkkkDkeffkkeff KKrCKBJ ββββ ,,,,,

&&&&&&

k
d
kkI

d
kkP

d
kkD drKKK &&&& 2

,,, −++= βββ                  (30) 

2,1=k       
  
Equation (30) can be rewritten in matrix form: 
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3.2 Trajectory Planning 
 
The PID controller can be designed to perform a 
trajectory tracking from the initial position ( )oo yx ,  to 

the final position ( )ff yx ,  at time ft .  Without loss of 
generality, the motion in x axis is assumed with 
following constraints: fo xx > , and constant 

acceleration xa−  in time interval [ ]bt,0 , constant 

speed xv−  in time interval [ ]bfb ttt −, , and constant 

acceleration xa in time interval [ ]fbf ttt ,− , where for 

a given constant speed xv , 
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The trajectory component xP  can be expressed as 
follows: 
 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤−−+−

−<≤+
−+

<≤+

=

bbfxfxfxf

bfbx
fxof

bxo

x

tttttattatax

tttttv
tvxx

tttax

P

,
2
1

2
1

,
2

0,
2
1

22

2

  (34) 

 
Fig. 10 displays the simulated trajectory described in 
Equations (33) and (34) for a given set of parameters.  
And the trajectory component yP  can also be 
expressed in the similar way.  Then the desired angular 
displacement dβ , velocity dβ&  and acceleration dβ&&  
can be determined:  
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3.3 Simulations of the Closed Loop Controlled  
       Robot Dynamics 
 

Denoting [ ]TX 212121 ββββββ &&&&&&&&= , 
Equation (31) can be rewritten as 
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Per Equations (35), the trajectory related matrices and 
vector given by Equation (32) can be determined.  Then 
the closed loop controlled dynamics of Adept 550 robot 
expressed in Equation (30) or (31) during the planned 
trajectory can numerically simulated.  
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Figure 10. Desired trajectory planning in x axis 

In order to verify the effectiveness of the PID controller 
based on dynamics of Adept 550 robot, the following 
case is given for simulations: assume the PID controller 
is with a critical damp for both inner link and outer link, 
the gripper moves from the initial position 

)254,508( mmPmmP yx ==  to the final position 

)254,127( mmPmmP yx ==  within sec1=ft .  
Fig. 11 shows the simulation results of Equation (36) 
recursively integrated by Adams – Bashforth method.   
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Figure 11. Simulation of PID controlled trajectory tracking 

It can be observed that the trajectory tracking process 
is fast and stable.  Its evaluation is given in the 
appendix. 

5. CONCLUSION 
The PID controller design for a nonlinear motion control 
based on the mathematical modelling of the dynamics 
of Adept 550 Robot is explored.  

 The general relationships of the PID controller design 
on the robotic dynamics and the planned trajectory are 
derived.  The analysis and simulations of its closed loop 
dynamics indicates its effectiveness in fast and 
accurate trajectory tracking.   

The procedure and analysis of this research can be 
practically generalized to other cases of PID controller 
design for other robots in the industrial applications.   It 
is meaningful for optimizing the commonly used PID 
controller without trial-and-error testing, and it is 
especially important for precision operations.   
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Appendix: Values of system parameters and 
evaluations 
The values of the system parameters of the robot inner 
and outer links are listed as bellows for numerical 
simulation:  
The transfer function for the inner link: 
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The transfer function for the outer link: 
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The PID controller for the inner link: 

1,PK = 9.003 Nm, 1,IK = 72.997 Nm/s, 1,DK = 0.302  
Nms 
The PID controller for the outer link: 

2,PK = 3.937  Nm,  2,IK = 31.917  Nm/s, 2,DK = 
0.076  Nms 

 
The position error is defined as 
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It should satisfy the following requirement at the final 
position: 
 
 mmte f 5.2)( ≤  
 
The actual error at the final position is 

mmte f 94.1)( = .   
The cost function  
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It should satisfy the following requirement over the 
entire trajectory: 
 25.2 mmJ ≤  

The actual cost function is 238.2 mmJ = . 


