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Abstract 

This paper analyzes the approximation of human movement which preserves dynamic balance under 
perturbations using Support Vector Machine (SVM) regression. The quality of approximation was eva-
luated by two criteria. The first one is deviation of approximated motion from the recorded one, while 
the other criteria is position of the Zero Moment Point (ZMP), because the dynamic balance has to be 
maintained. For the human movement, ZMP is constantly within the support area. For the approxi-
mated motion applied to humanoid the position of ZMP is calculated. It is possible that the ZMP leaves 
the support area due to deviation of approximated motion from the recorded one, as well as the devia-
tion of dynamic parameters of humanoid from the real human parameters. Initial motion was recorded 
from humans and then approximated. Approximated data are applied on humanoid robot model and 
resulting motion is observed. The resulting motion obtained by SVM regression approximation were 
compared with cubic spline approximation. The approximated motion and calculated ZMP were then 
used to train a new SVM. This SVM was then used to generate motion in a humanoid robot based on 
the desired ZMP position. Comparative analysis of results indicates that there are significant potential  
applications of SVM regression in humanoid robotics for approximation and generation of motion, as 
well as for other tasks which require the use of artificial intelligence. 
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1. INTRODUCTION 
Due to constant presence of disturbances, the primary 
task of any humanoid robot is to maintain dynamic bal-
ance [1]. Small disturbances [2] are always present and 
cannot be avoided. Such disturbances are usually com-
pensated by conventional PID control. In case of larger 
disturbances (e.g. stumbling upon an obstacle, shoving 
aside, etc.) maintaining dynamic balance becomes 
more complicated. Compensatory actions in humans 
mostly represent a coordinated, vigorous, and synchro-
nized movement [2, 3]. After a vigorous motion aimed at 
preserving the dynamic balance, a human uses slow 
movement to restore the state from which he/she con-
tinues to perform the motion disrupted by the distur-
bance. In order for such motion to be performed by a 
humanoid robot, it is necessary to analyze previous 
human motion.  

By recording movement made by a human, we collect 
motion data in every joint. Since it is obvious that there 
exist differences in kinematic and dynamic parameters 
between humans and humanoid robots, it is not possi-

ble to use identical movements on a humanoid robot 
(i.e. to emulate the change of values of internal co-
ordinates which happen in human motion). Therefore, it 
is necessary to modify the recorded motion data in such 
a way that the effects remain intact, in our case to main-
tain the dynamic balance of a robot. As an indicator of 
maintaining the quality of robot dynamic balance we 
shall use the Zero Moment Point (ZMP) [4]. Beside 
maintaining the dynamic balance, the recorded data 
must also be modified so as to emulate the form of hu-
man motion for the same type of disturbance, and thus 
produce the same effect. This results in a humanoid 
robot motion which not only maintains dynamic balance 
but also corresponds to characteristics of human 
movement. 

The recorded data were approximated. Cubic spline 
approximation is one of the most popular approxima-
tors, but there are also a number of other methods, 
such as approximation by B-spline curves, polynomial 
approximation, etc. Another way to approach approxi-
mation is to apply machine learning algorithms which 
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are used to train Artificial Neural Networks (ANN) and 
Support Vector Machines (SVM).  

The approximated motions were simulated on a model 
of a humanoid robot. The results of motion simulation 
obtained by SVM regression were compared to motion 
obtained by cubic spline. During simulation, ZMP was 
calculated for every motion to check the maintenance of 
dynamic balance. Since SVM regression can yield any 
type of nonlinear relationship between input and output 
[5], in this paper the training of SVM is presented which 
finds a relationship between the predefined trajectory of 
ZMP and the motion of a humanoid robot which corre-
sponds to that trajectory. Human movement and hu-
manoid robot motion obtained from trained SVM were 
compared as well as the measured and the predefined 
ZMP trajectory.  

2. SVM REGRESSION 
Supervised learning is one of the machine learning al-
gorithms which is also used to train SVMs. It deter-
mines the unknown relationships between input and 
output values based on experimental data. Inputs and 
outputs represent the training data set, while the train-
ing process results in an approximating func-
tion ( , )af x w . Vector x  represents input, while w  is the 
weighted coefficient matrix.  

To obtain the approximating function by SVM regres-
sion, it is necessary to perform minimization of the ex-
pected error ( )R w  

( ) ( , ) ( , ) ( , ( , )) ( , )aR L y o dP y L y f dP y= =∫ ∫w x x w x   (1) 

In (1), the loss function, ( , ( , ))aL y f x w , was calculated 
over a training data set which can be L1, L2, or any 
other norm. For the loss function Vapnik in [6] intro-
duced a linear loss function with ε-insensitivity zone: 
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Thus, the error equals zero if the difference between 
the approximated and original value is less than ε (Fig. 
2.1). Vapnik’s loss function with ε-insensitivity zone de-
fines an ε-tube around the output data.  

 
Figure 2.1. Loss function with ε-insensitivity zone 

Although primarily developed for classification prob-
lems, the SVM method is successfully used in regres-
sion problems, i.e. for function approximation. Gener-
ally, regression problems are approached in the follow-
ing way. Regression implies finding of input-output rela-

tions, which means that the training algorithm is fed with 
a training data set organized in data pairs 
{ }, n

i iy R R∈ ×x , 1,...,i l=  where the inputs are n-

dimensional vectors x n
i R∈ , while the outputs are con-

tinuous values iy R∈ . Based on these data the algo-
rithm is “learning“ the input-output relations of the sys-
tem, thus forming input/output relationship in the form of 
a function. 

If the relationship between input and output data can be 
established as ( ) Tf b= +x w x , the linear regression is 
solved by minimizing the following function: 
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In (3) ix  and iy  represent input and target output. 
Function ( , )if x w  is the approximation of the output, 
while w  is the weight coefficient matrix. C  and 

ε
⋅  

represent the penalty coefficient and ε-insensitivity 
zone, respectively.  

Real-life problems often demand solution of non-linear 
input/output relationships. Non-linear regression using a 
support vector is resolved by mapping the input vector 

nR∈x  into the vector fR∈z , where the vector z  be-
longs to a space of higher dimensionality than that of 
vector x . Thus ( )= Φz x  where Φ  is the mapping 

function n fR R→ . In the following step, the linear re-
gression is solved in the higher dimensionality space. 
Mapping function Φ  is selected in advance and repre-
sents a fixed function for a given problem. The goal of 
such a mapping is to obtain, in the space of vector z, a 
problem which can be solved by linear regression. The 
solution of regression hypersurface ( )Tf b= +w z x , 
which is linear is space fR  This results in a nonlinear 
hypersurface in the initial space nR  to which the input 
vector x  belongs. Functions Φ  (the so called kernels) 
which are most often used for mapping into higher di-
mensionality space are the polynomials and the Radial 
Basis Function (RBF). 
There are a number of parameters which can vary in 
the process of solving the regression problem using 
SVM. The two parameters in (3) which directly impact 
the solution of approximation are the ε-insensitivity zone 
and the penalty coefficient C . Fig. 2.2 shows the ex-
ample of approximation of a noise affected sine func-  

 

Figure 2.2. Impact of ε-insensitivity zone on the quality of re 
                   gression function (left diagram: ε=0.1, right: dia 
                   gram ε=0.5)  
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tion, where we can see the influence of an increase of 
the ε-insensitivity zone on the smoothness of the func-
tion [5]. The increase of ε-insensitivity zone in fact 
causes a reduction of the approximation accuracy. The 
number of support vectors, resulting in a smoother func-
tions is also reduced. Table 2.1 presents the steps in 
creating the SVM. 
Table 2.1. Steps in creating the SVM  
Step 1 Select the kernel function which defines 

the shape of the  separation function (for 
classification) or the approximation func-
tion (for regression) 

Step 2 Select the complexity of the kernel func-
tion (e.g. degree of polynomial, variance 
of RBF with normal distribution func-
tion...) 

Step 3 Select the penalty coefficient and the 
required accuracy by defining the ε-
insensitivity zone. 

Step 4 Solve the quadratic programming prob-
lem over the training set. 

SVM training algorithms perform very well with medium 
size data sets. However, when the number of data pairs 
increases ( 2000l > ), the quadratic optimization problem 
becomes extremely complex which represents the ma-
jor drawback of SVM. Various methods have been de-
vised to overcome this problem; however, this is not 
within the scope of this paper. One of the ways to over-
come this problem is the chunking method proposed by 
Vapnik [6] which is based on data decomposition into 
smaller sets.  

3. CONDITION OF DYNAMIC BALANCE 
The quality of motion approximation by SVM regression 
shall be tested from the aspect of internal synergy, as 
well as maintaining dynamic balance. We shall there-
fore first explain the concept of dynamic balance and 
the conditions required for its fulfillment. 

Dynamic balance: A humanoid remains dynamically 
balanced as long as the support surface is maintained 
i.e. if there has not been rotation of the humanoid about 
the edge of the support surface, resulting in a  fall. For 
dynamic balance it is necessary and sufficient that the 
resultant of the normal pressure forces from the foot (or 
feet) to the ground act at a point that is inside the sup-
port area (excluding the edges) [7]. 

To deduce the formal, analytical conditions of dynamic 
balance, let us consider the humanoid during a single-
support phase (Fig 3.1 a), where the foot rests on the 
support with its entire surface. For the sake of simplic-
ity, the influence of the part of the humanoid which is 
above the ankle joint of the support foot (point A) shall 
be replaced by force AF  and moment AM  (Fig 3.1 b). 
The weight of the foot alone acts as the centre of grav-
ity (point G). At point P, the the support surface reaction 
force acts upon the  foot, which maintains the balance 
of the entire mechanism.  

Force R and the reaction moment of the support surface 
M can be broken down into three components 
( ), ,x y zR R R R  and ( ), ,x y zM M M M . The vertical reaction 

force ( )zR  represents the reaction of the support sur-
face which counterbalances the vertical component of 
force AF  and the  foot weight. Horizontal components of 

the support surface reaction force ( ),x yR R counterbal-

ance the horizontal component of force AF . Under the 
assumption of a sufficiently large friction coefficient be-
tween the foot and the ground, the vertical component 
of the reaction moment ZM , caused by the vertical 
component of moment AM , and the vertical component 
of moment at point P due to force AF , are counterbal-
anced by friction, and cannot be the cause of any 
movement. The horizontal components of moment AM  
and the moment caused by forces AF  and G, are coun-
terbalanced by the location change of the reaction force 

ZR acting point within the support surface. This is shown 
in Fig 3.1 where, for sake of simplicity, a y-z plane case 
is shown. Moment AXM  is counterbalanced by the 
change in the location of the acting point of the ground 
reaction force ZR . The magnitude of force ZR  is de-
fined by the equilibrium of the vertical components of all 
forces acting upon the foot. It is important to note that - 
as long as the acting point of the reaction force lies 
within the surface area which is in contact with the foot - 
the change of the moment acting at the joint shall be 
counterbalanced by the shift of the acting point of the 
reaction force. Therefore, at point P there are no hori-
zontal components XM  and YM . 

 
Figure 3.1. Biped mechanism, forces, and moments reduced  
                    to support foot 
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However, if the support surface area is insufficiently 
large to encompass the required location of the acting 
point of the reaction force, force R  shall act at the edge 
of the foot (it is important to note that the reaction force 
cannot leave the support surface) while the unbalanced 
component of the moment’s horizontal component shall 
cause the mechanism to rotate about the edge of the 
foot which ultimately leads to the fall of the locomotion 
system.  

According to that, the necessary and sufficient condition 
of the dynamic equilibrium of locomotion system is that 
the ground reaction force is acting within the support 
surface area. Therefore, at that point the following con-
ditions hold: 

0XM = , 0YM =  (4) 
Considering the conditions from (4), point P in Fig. 3.1 
is called the Zero Moment Point (ZMP).   

4. EXPERIMENT 
Results presented in the paper were obtained by simu-
lation. Two SVMs were formed. Firstly described is the 
SVM regression for motion approximation (location of 
the ZMP was not taken into account), while the results 
of motion simulation were compared to the simulation of 
motion approximated with cubic splines. The other SVM 
was used to generate complete motion of a humanoid 
robot by defining the required ZMP trajectory.  

4.1 Data recording 

In co-operation with the research of the Holodeck Gait 
Laboratory which is part of the Laboratory for Computer 
Science and Artificial Intelligence at MIT (Massachu-
setts Institute of Technology), the data were recorded 
using the VICON 512 system which operates at 120 
fps. For recording, 33 markers were employed whose 
location was recorded with ~1 mm accuracy. Three 
adults participated in the experiment. Each person was 
asked to stand on his/her left foot while leaning against 
an obstacle with their left shoulder. The leaning force 
was measured and once it reached the limit of 20N the 
obstacle was abruptly removed. The movement made 
in an attempt to prevent the fall was recorded. The 20N 
limit was chosen so that the projection of a person’s 
centre of gravity falls outside of the support surface. In 
this case, to maintain dynamic balance. Each subject 
had to perform an energetic movement which brought 
the projection of their centre of gravity back under their 
foot while the ZMP constantly remained within the sup-
port surface.  

During every movement, a force plate (Advanced Me-
chanical Technology Inc., Watertown, MA) was used to 
measure and record the location of the ground reaction 
force, which in this case coincided with the ZMP. The 
ZMP location measurement accuracy was approxi-
mately 2mm. Each subject repeated the movement 10 
times, thus a total of 30 movements was recorded [3]. 
In this paper only the data of one recorded movement 
was used and processed.  

4.2 Model of a humanoid robot 
Kinematic structure of the model of a humanoid robot 
used in this experiment consists of four kinematic 
chains as shown in Fig. 4.1. The first kinematic chain 
represents the legs, the second forms the body and 
right arm, the third represents the left arm, while the 
fourth kinematic chain represents the neck and head.  
The joints with multiple Degrees of Freedom (DoFs) 
were modeled as a set of virtual segments (segments 
with zero mass and negligible length) connected by 
1DoF joints. For instance, the hip joint which is a spher-
ical joint with 3 DoF, was modeled as a set of three 
1DoF segments whose axes of rotation are mutually 
orthogonal [8].  

4.3 Approximation of motion 

The recorded motion and the measured ZMP location 
are shown in Fig. 4.2 where marker locations are repre-
sented by circles. It should be noted that Fig. 4.2 de-
picts a visualization of the recorded movement and il-
lustrates the measured location of the ZMP. It is obvi-
ous that the human very skillfully maintains the ZMP 
within the support surface.  

 

Figure 4.1. Mechanical structure of the model of a humanoid  
                    robot with 62 degrees of freedom 
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Figure 4.2. Stick diagram and marker locations on a human (left); ZMP locations obtained by measurement (right);  

  
Figure 4.3. Stick diagram and locations of the markers on a human (left); ZMP locations (right); the data were approximated by  
                     cubic splines with smoothing parameter of 0.9 

If the recorded movement is completely applied on a 
humanoid robot, a calculated ZMP location will signifi-
cantly deviate from the measured one. The reasons are 
as follows: 
• There are differences in the kinematic and dynamic 

parameters between a humanoid and a human sub-
ject involved in the experiment. Thus, the same 
movement applied on a humanoid, whose segment 
parameters are different from those of a human 
subject, causes different dynamic effects.  

• In the simulation, the foot was treated as a rigid 
body immobile with respect to the support surface. 
However, there exist small movements between the 
foot and the support surface which were too small 
to measure, but nevertheless influence the behavior 
of the system.  

• There is a small relative movement between the 
markers and the human body to which they are at-
tached, etc.  

Since those small movements are constantly present 
and it is not possible to determine the correct parame-
ters of the human body segments, the value of the  in-
ternal co-ordinate to be applied to the humanoid should 
be approximated by smooth functions in such a way as 
to preserve movement character while maintaining the 

system’s dynamic balance. This demands that the val-
ues of the velocities and the accelerations in joints be 
modified, because they have a direct impact on the 
ZMP location [3].  

Also, if the recorded movement is applied on human-
oids of different size*, the calculated ZMP location will 
also differ. To apply recorded human movement on dif-
ferent robots one can use a semi-inverse method to 
calculate whole body motion. If the semi-inverse me-
thod is used, the motion of the legs is obtained from the 
recorded movement. With the prescribed ZMP trajec-
tory, the trunk motion can be calculated so that the 
condition of dynamic balance preservation is satisfied. 
The problem of applying the recorded movement on 
different robots is covered as part of the scope of this 
paper. Approximation of the recorded motion and mo-
tion generation will be described on a humanoid robot 
model whose parameters are very close to those of a 
human subject . 

Two methods were used for approximation of the re-
corded motion, the cubic spline approximation and ap-
proximation by SVM regression. In Fig. 4.3 are stick 
                                                 
* If two humanoid robots are different in size, it is clear that 
corresponding kinematic and dynamic parameters are also 
different. 
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diagrams of a humanoid robot motion (cubic spline ap-
proximation with smoothing parameter of 0.9) and a 
ZMP trajectory. This high smoothing parameter indi-
cates an approximation which is very close to the re-
corded movement. 

Motion approximation by SVM regression is illustrated 
in the following examples. A Gaussian function of nor-
mal distribution was adopted for the kernel function. An 
approximation was performed without taking into ac-
count the ZMP location (it was calculated as just the 
motion consequence). The simulation was performed 
for eight different cases, varying the values of ε-
insensitivity zones and penalties parameter. In Table 
4.1 the results are systematized so that each combina-
tion of ε-insensitivity zone and penalty coefficient is 
paired with the maximum deviation in the ZMP trajec-
tory and the maximum deviation of approximated values 

of the internal co-ordinates from the recorded ones. It 
should be noted that the form of movement strongly 
depends on the value of the ε-insensitivity zone. For 
higher values of ε, the movement loses its form which is 
a basic reason that we decided to use just two values of 
the ε-insensitivity zone: 0 and 0.01. It is obvious from 
the table that the increase of penalty coefficient lowers 
the maximum deviations of the internal co-ordinates, 
but increases the ZMP deviations. Obviously, a trade-
off must be established between the SVM training pa-
rameters, i.e. between the deviations of ZMP and the 
internal co-ordinates. This is illustrated in Fig. 4.4, - 4.6. 
Let us first compare the cases shown in Fig. 4.4 and 
4.5. In both cases the ε-insensitivity zone was 0.01. In 
the example shown in Fig. 4.4 the penalty coefficient 
was 1000, while in Fig. 4.5 it equals 10, which reveals 
its influence on ZMP trajectory.  

Table 4.1. Influence of the ε –insensitivity zone and the penalty coefficient on deviation of internal co-ordinates and  the ZMP 

No. ε–insensitivity 
zone 

Penalty co-
efficient 

Maximum deviation of internal 
co-ordinates [rad] max minZMP ZMP− [m] 

1 0.01 1 0.3175 0.0838 
2 0 1 0.3162 0.0843 
3 0.01 10 0.2934 0.1137 
4 0 10 0.2950 0.1156 
5 0.01 100 0.2588 0.1336 
6 0 100 0.2609 0.1504 
7 0.01 1000 0.2390 0.2255 
8 0 1000 0.2425 0.2885 

   
Figure 4.4. Stick diagram and marker locations on a human (left); ZMP location (right); the data were approximated by SVM re 
                    gression (ε-insensitivity zone equals 0.01, penalty coefficient equal 1000)  

   
Figure 4.5. Stick diagram and marker locations on a human (left); ZMP location (right); the data were approximated by SVM re 
                    gression (ε-insensitivity zone equals 0.01, penalty coefficient equal 10)  
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Figure 4.6. Stick diagram and marker locations on a human (left); ZMP location (right); the data were approximated by SVM re 
                    gression (ε-insensitivity zone equals 0.1, penalty coefficient equal 10) 

The following discussion illustrates how the increase of 
ε-insensitivity zone impacts the motion approximation. 
The case illustrated in Fig. 4.6 was additionally simu-
lated. The approximation was also performed by SVM 
regression. The value of the ε-insensitivity zone was 
0.1, while the penalty coefficient was 10 just as in Fig. 
4.5. Comparison of the cases shown in Fig. 4.5 and Fig. 
4.6 reveals the loss of the required form of movement. 
Consequently, the ZMP trajectory also completely 
changed as compared to the previous cases. 

Thus, selection of the ε-insensitivity zone requires care-
ful consideration. A wider ε results in smoother motion 
approximations with lower accelerations in the  joints. 
However, ε must not be too large because the distortion 
of the desired form of movement can appear. 

4.4 Motion generation based on defined ZMP  
      trajectory 
Since the priority task of every humanoid is to maintain 
dynamic balance, it is important to generate motion 
which allows the ZMP to be within the support surface. 
In other words, motion should be synthesized so as to 
be similar in form to the human’s (anthropomorphic) 
while providing dynamic balance.  

This section describes the SVM which generates mo-
tion of all joints based on a predefined ZMP trajectory, 
while maintaining anthropomorphic form of the move-
ment. Thus generated changes of all internal co-
ordinates are used to calculate (or measure, in the case 
of a real robot) the ZMP location which is then com-
pared to the desired one. If the real ZMP location does 
not significantly deviate from the desired ZMP location, 
i.e. if it does not leave the support surface (providing 
that the generated motion has the desired form) the 
synthesized motion satisfies the requirements.  

In this case, the training of the SVM should produce 
function fa: 

( ),af ZMP ZMP=q &&&  (5) 

such that the relationship between the segment accel-
erations and the ZMP location are established. 

 

 
Figure 4.7. ZMP locations for the four approximated move 
                     ments which were used for the training set  

The data for the training set were collected as follows. 
Four movements (out of the 30 mentioned before) were 
selected and approximated with different parameters.   

For each approximated motion, the ZMP location and 
velocity were calculated (Fig. 4.7). The total number of 
time samples taken from the four movements was 
5400, resulting in 5400 input-output pairs. From eq. (5) 
it follows that the input data are the SVM location and 
the ZMP velocity, while the output data are the angular 
accelerations in the 62 joints. Bearing in mind that SVM 
performance deteriorates with larger training sets, the 
initial set of 5400 input-output pairs was reduced to 
2000 randomly selected pairs. Upon completion of the 
training process, the SVM was tested by using the de-
sired ZMP trajectory (selected in a way which allows  
ZMP to remain constant within the support surface) to 
generate the corresponding motion.Fig. 4.8 shows the 
result of this test. The light grey thick line indicates the 
desired ZMP trajectory, while the thin black line indi-
cates the real ZMP trajectory. To allow comparison, the 
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measured ZMP location is also shown for the human-
made movement.  

 
Figure 4.8. Trajectory of measured, desired and real ZMP ob 
                    tained by SVM approximation 

  
Figure 4.9. Stick diagram of the synthesized motion 

In Fig. 4.9 is a stick diagram of the synthesized motion. 
It shows that the form of the motion conforms to the 
recorded one. However, the motion amplitudes are still 
lower than those generated by a human. 

5. CONCLUSION 
Human movements recorded by a motion capture sys-
tem cannot be directly used to generate motion of hu-
manoid robots. To apply these movements to humanoid 
robots, it is necessary to modify the data so that they 
correspond to kinematic and dynamic parameters of a 
robot. Adjustment of movements was performed using 
SVM regression as a novel method for data approxima-
tion. The results presented in this paper show that such 
approximation requires a trade-off between the tracking 
accuracy of the recorded motion†, and the ZMP trajec-

                                                 
† It should be noted that the motion of humanoid robots does 
not always require exact following of trajectory. It is clear 

tory. The decrease of deviation of internal co-ordinates 
leads to higher deviations in the ZMP trajectory. Alter-
natively, if the goal is to decrease these deviations, it is 
necessary to generate smoother joint motions. How-
ever, this leads to higher deviations from originally re-
corded human movements.  

Further investigation should include the impact of other 
SVM parameters on motion approximation, including 
experiments with various kernel functions. 

In [9], SVM and neural network based control algo-
rithms for maintaining dynamic balance were compared. 
It was shown that SVM algorithms are faster than their 
ANN counterparts (up to 50 times) and can be used in 
real time. This implies that SVM could be used to gen-
erate reflex movements, e.g. to counterbalance large 
and abrupt disturbances (shoulder shove, tripping over 
an obstacle, etc.) for real humanoids performing the 
same motion. Upon completed training, and based on 
the detected type of disturbance and the desired trajec-
tory (location) of the ZMP, a humanoid could choose 
the most suitable compensatory movement. This will be 
one of our future research directions.  

In this paper, the proposed approach was illustrated by 
just a single movement. The authors believe that such 
an approach allows the system to train well, to maintain 
dynamic balance regardless of the generated move-
ment (walking, stair climbing, turning aside, etc.).  
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that the effect that a sway by hand or leg has on the ZMP 
location is far more important than following an exact trajec-
tory. 

Desired ZMP 
trajectory 

Real ZMP 
trajectory 

Measured 
ZMP trajectory 


